Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The formation of the first stars and galaxies

Abstract

Observations made using large ground-based and space-borne telescopes have probed cosmic history from the present day to a time when the Universe was less than one-tenth of its present age. Earlier still lies the remaining frontier, where the first stars, galaxies and massive black holes formed. They fundamentally transformed the early Universe by endowing it with the first sources of light and chemical elements beyond the primordial hydrogen and helium produced in the Big Bang. The interplay of theory and upcoming observations promises to answer the key open questions in this emerging field.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Projected gas distribution around a primordial protostar.
Figure 2: Feedback-limited accretion.
Figure 3: Dark-matter properties and early star formation.
Figure 4: Radiative feedback around the first stars.
Figure 5: Turbulence inside the first galaxies.

Similar content being viewed by others

References

  1. Barkana, R. & Loeb, A. In the beginning: The first sources of light and the reionization of the Universe. Phys. Rep. 349, 125–238 (2001)

    ADS  CAS  Google Scholar 

  2. Miralda-Escudé, J. The dark age of the Universe. Science 300, 1904–1909 (2003)

    ADS  PubMed  Google Scholar 

  3. Loeb, A., Ferrara, A. & Ellis, R. S. First Light in the Universe (Springer, 2008)

    Google Scholar 

  4. Bromm, V. & Larson, R. B. The first stars. Annu. Rev. Astron. Astrophys. 42, 79–118 (2004)

    ADS  CAS  Google Scholar 

  5. Ciardi, B. & Ferrara, A. The first cosmic structures and their effects. Space Sci. Rev. 116, 625–705 (2005)

    ADS  Google Scholar 

  6. Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Formation of galaxies and large-scale structure with cold dark matter. Nature 311, 517–525 (1984)

    ADS  CAS  Google Scholar 

  7. Couchman, H. M. P. & Rees, M. J. Pregalactic evolution in cosmologies with cold dark matter. Mon. Not. R. Astron. Soc. 221, 53–62 (1986)Firmly established the time and location for first star formation within the newly introduced CDM model.

    ADS  CAS  Google Scholar 

  8. Glover, S. The formation of the first stars in the Universe. Space Sci. Rev. 117, 445–508 (2005)

    ADS  CAS  Google Scholar 

  9. Dekel, A. et al. Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature 457, 451–454 (2009)

    ADS  CAS  Google Scholar 

  10. Galli, D. & Palla, F. The chemistry of the early Universe. Astron. Astrophys. 335, 403–420 (1998)Assembled modern versions of the relevant molecular cooling rates in primordial gas.

    ADS  CAS  Google Scholar 

  11. Abel, T., Bryan, G. L. & Norman, M. L. The formation of the first star in the Universe. Science 295, 93–98 (2002)The first simulation to connect cosmological initial conditions with the formation of a single population III star within a minihalo.

    ADS  CAS  PubMed  Google Scholar 

  12. Bromm, V., Coppi, P. S. & Larson, R. B. The formation of the first stars. I. The primordial star-forming cloud. Astrophys. J. 564, 23–51 (2002)Made the case that the first stars were very massive, based on the Jeans mass evaluated at the characteristic temperature and density.

    ADS  CAS  Google Scholar 

  13. Yoshida, N., Omukai, K., Hernquist, L. & Abel, T. Formation of primordial stars in a ΛCDM Universe. Astrophys. J. 652, 6–25 (2006)

    ADS  CAS  Google Scholar 

  14. Tegmark, M. et al. How small were the first cosmological objects? Astrophys. J. 474, 1–12 (1997)Established the role of molecular hydrogen cooling in setting the mass of dark matter haloes where population III stars can form.

    ADS  CAS  Google Scholar 

  15. Gao, L. et al. The first generation of stars in the Λ cold dark matter cosmology. Mon. Not. R. Astron. Soc. 378, 449–468 (2007)

    ADS  CAS  Google Scholar 

  16. Omukai, K. & Nishi, R. Photodissociative regulation of star formation in metal-free pregalactic clouds. Astrophys. J. 518, 64–68 (1999)

    ADS  CAS  Google Scholar 

  17. Kitayama, T., Yoshida, N., Susa, H. & Umemura, M. The structure and evolution of early cosmological H II regions. Astrophys. J. 613, 631–645 (2004)

    ADS  CAS  Google Scholar 

  18. Machida, M. N., Omukai, K., Matsumoto, T. & Inutsuka, S. Conditions for the formation of first-stars binaries. Astrophys. J. 677, 813–827 (2008)

    ADS  CAS  Google Scholar 

  19. Clark, P. C., Glover, S. C. O. & Klessen, R. S. The first stellar cluster. Astrophys. J. 672, 757–764 (2008)

    ADS  Google Scholar 

  20. Yoshida, N., Omukai, K. & Hernquist, L. Protostar formation in the early Universe. Science 321, 669–671 (2008)The first fully self-consistent simulation of primordial protostar formation, reaching the largest dynamic range achieved so far.

    ADS  CAS  PubMed  Google Scholar 

  21. Silk, J. The first stars. Mon. Not. R. Astron. Soc. 205, 705–718 (1983)

    ADS  CAS  Google Scholar 

  22. Bromm, V. & Loeb, A. Accretion onto a primordial protostar. N. Astron. 9, 353–364 (2004)

    ADS  Google Scholar 

  23. Bromm, V., Coppi, P. S. & Larson, R. B. Forming the first stars in the Universe: The fragmentation of primordial gas. Astrophys. J. 527, L5–L9 (1999)

    ADS  CAS  PubMed  Google Scholar 

  24. McKee, C. F. & Ostriker, E. C. Theory of star formation. Annu. Rev. Astron. Astrophys. 45, 565–687 (2007)

    ADS  CAS  Google Scholar 

  25. McKee, C. F. & Tan, J. C. The formation of the first stars II. Radiative feedback processes and implications for the initial mass function. Astrophys. J. 681, 771–797 (2008)Suggested a plausible physical mechanism determining where protostellar accretion shuts off, thus setting the final mass of a population III star.

    ADS  CAS  Google Scholar 

  26. Ryu, D., Kang, H., Cho, J. & Das, S. Turbulence and magnetic fields in the large-scale structure of the Universe. Science 320, 909–912 (2008)

    ADS  CAS  PubMed  Google Scholar 

  27. Schaerer, D. On the properties of massive population III stars and metal-free stellar populations. Astron. Astrophys. 382, 28–42 (2002)

    ADS  CAS  Google Scholar 

  28. McKee, C. F. & Tan, J. C. Massive star formation in 100,000 years from turbulent and pressurised molecular clouds. Nature 416, 59–61 (2002)

    ADS  CAS  PubMed  Google Scholar 

  29. Tan, J. C. & McKee, C. F. The formation of the first stars. I. Mass infall rates, accretion disk structure, and protostellar evolution. Astrophys. J. 603, 383–400 (2004)

    ADS  CAS  Google Scholar 

  30. Hollenbach, D. J., Johnstone, D., Lizano, S. & Shu, F. Photoevaporation of disks around massive stars and application to ultracompact H II regions. Astrophys. J. 428, 654–669 (1994)

    ADS  Google Scholar 

  31. Tan, J. C. & Blackman, E. G. Protostellar disk dynamos and hydromagnetic outflows in primordial star formation. Astrophys. J. 603, 401–413 (2003)

    ADS  Google Scholar 

  32. Stacy, A. & Bromm, V. Impact of cosmic rays on Population III star formation. Mon. Not. R. Astron. Soc. 382, 229–238 (2007)

    ADS  CAS  Google Scholar 

  33. Yoshida, N., Omukai, K. & Hernquist, L. Formation of massive primordial stars in a reionized gas. Astrophys. J. 667, L117–L120 (2007)

    ADS  CAS  Google Scholar 

  34. Nakamura, F. & Umemura, M. The stellar initial mass function in primordial galaxies. Astrophys. J. 569, 549–557 (2002)

    ADS  CAS  Google Scholar 

  35. Johnson, J. L. & Bromm, V. The cooling of shock-compressed primordial gas. Mon. Not. R. Astron. Soc. 366, 247–256 (2006)

    ADS  CAS  Google Scholar 

  36. McGreer, I. D. & Bryan, G. L. The impact of HD cooling on the formation of the first stars. Astrophys. J. 685, 8–20 (2008)

    ADS  CAS  Google Scholar 

  37. Spolyar, D., Freese, K. & Gondolo, P. Dark matter and the first stars: A new phase of stellar evolution. Phys. Rev. Lett. 100, 051101 (2008)

    ADS  PubMed  Google Scholar 

  38. Freese, K., Bodenheimer, P., Spolyar, D. & Gondolo, P. Stellar structure of dark stars: A first phase of stellar evolution resulting from dark matter annihilation. Astrophys. J. 685, L101–L104 (2008)

    ADS  CAS  Google Scholar 

  39. Iocco, F. et al. Dark matter annihilation effects on the first stars. Mon. Not. R. Astron. Soc. 390, 1655–1669 (2008)

    ADS  Google Scholar 

  40. Griest, K. & Kamionkowski, M. Supersymmetric dark matter. Phys. Rep. 333, 167–182 (2000)

    ADS  Google Scholar 

  41. Bromm, V., Kudritzki, R. P. & Loeb, A. Generic spectrum and ionization efficiency of a heavy initial mass function for the first stars. Astrophys. J. 552, 464–472 (2001)

    ADS  CAS  Google Scholar 

  42. Whalen, D., Abel, T. & Norman, M. L. Radiation hydrodynamic evolution of primordial H II regions. Astrophys. J. 610, 14–22 (2004)

    ADS  CAS  Google Scholar 

  43. Alvarez, M. A., Bromm, V. & Shapiro, P. R. The H II region of the first star. Astrophys. J. 639, 621–632 (2006)

    ADS  CAS  Google Scholar 

  44. Abel, T., Wise, J. H. & Bryan, G. L. The H II region of a primordial star. Astrophys. J. 659, L87–L90 (2007)

    ADS  CAS  Google Scholar 

  45. Ciardi, B., Ferrara, A. & Abel, T. Intergalactic H2 photodissociation and the soft ultraviolet background produced by population III objects. Astrophys. J. 533, 594–600 (2000)

    ADS  CAS  Google Scholar 

  46. Haiman, Z., Abel, T. & Rees, M. J. The radiative feedback of the first cosmological objects. Astrophys. J. 534, 11–24 (2000)

    ADS  CAS  Google Scholar 

  47. Johnson, J. L., Greif, T. H. & Bromm, V. Radiative feedback in the formation of the first protogalaxies. Astrophys. J. 665, 85–95 (2007)

    ADS  CAS  Google Scholar 

  48. Susa, H. & Umemura, M. Secondary star formation in a population III object. Astrophys. J. 645, L93–L96 (2006)

    ADS  CAS  Google Scholar 

  49. Ahn, K. & Shapiro, P. R. Does radiative feedback by the first stars promote or prevent second generation star formation? Mon. Not. R. Astron. Soc. 375, 881–908 (2007)

    ADS  CAS  Google Scholar 

  50. Whalen, D., O'Shea, B. W., Smidt, J. & Norman, M. L. How the first stars regulated local star formation. I. Radiative feedback. Astrophys. J. 679, 925–941 (2008)

    ADS  CAS  Google Scholar 

  51. Machacek, M. E., Bryan, G. L. & Abel, T. Simulations of pregalactic structure formation with radiative feedback. Astrophys. J. 548, 509–521 (2001)

    ADS  CAS  Google Scholar 

  52. Ricotti, M., Gnedin, N. Y. & Shull, J. M. Feedback from galaxy formation: Production and photodissociation of primordial H2 . Astrophys. J. 560, 580–591 (2001)

    ADS  Google Scholar 

  53. Oh, S. P. & Haiman, Z. Second-generation objects in the Universe: Radiative cooling and collapse of halos with virial temperatures above 104 K. Astrophys. J. 569, 558–572 (2002)

    ADS  CAS  Google Scholar 

  54. Ferrara, A. The positive feedback of population III objects on galaxy formation. Astrophys. J. 499, L17–L20 (1998)

    ADS  CAS  Google Scholar 

  55. Haiman, Z., Rees, M. J. & Loeb, A. Destruction of molecular hydrogen during cosmological reionization. Astrophys. J. 476, 458–463 (1997)Introduced the concept of negative radiative feedback that might act to self-limit population III star formation.

    ADS  CAS  Google Scholar 

  56. Heger, A. & Woosley, S. E. The nucleosynthetic signature of population III. Astrophys. J. 567, 532–543 (2002)The first definitive calculation of the nucleosynthetic pattern of very massive population III stars that die as pair-instability supernovae.

    ADS  CAS  Google Scholar 

  57. Tumlinson, J. Chemical evolution in hierarchical models of cosmic structure. I. Constraints on the early stellar initial mass function. Astrophys. J. 641, 1–20 (2006)

    ADS  CAS  Google Scholar 

  58. Karlsson, T., Johnson, J. L. & Bromm, V. Uncovering the signature of the first stars in the Universe. Astrophys. J. 679, 6–16 (2008)

    ADS  CAS  Google Scholar 

  59. Maeder, A., Meynet, G. & Ekström, S. in From Stars to Galaxies: Building the Pieces to Build Up the Universe (eds Vallenari, A., Tantalo, R., Portinari, L. & Moretti, A.) 13–20 (ASP Conf. Ser. 374, Astronomical Society of the Pacific, 2007)

    Google Scholar 

  60. Yoon, S.-C. & Langer, N. Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts. Astron. Astrophys. 443, 643–648 (2005)

    ADS  CAS  Google Scholar 

  61. Woosley, S. E. & Heger, A. The progenitor stars of gamma-ray bursts. Astrophys. J. 637, 914–921 (2006)

    ADS  CAS  Google Scholar 

  62. Nomoto, K., Tominaga, N., Tanaka, M., Maeda, K. & Umeda, H. in Massive stars as Cosmic Engines (eds Bresolin, F., Crowther, P. A. & Puls, J.) 463–470 (Cambridge Univ. Press, 2008)

    Google Scholar 

  63. Greif, T. H., Johnson, J. L., Bromm, V. & Klessen, R. S. The first supernova explosions: Energetics, feedback, and chemical enrichment. Astrophys. J. 670, 1–14 (2007)

    ADS  CAS  Google Scholar 

  64. Wise, J. H. & Abel, T. Resolving the formation of protogalaxies. III. Feedback from the first stars. Astrophys. J. 685, 40–56 (2008)

    ADS  CAS  Google Scholar 

  65. Mori, M., Ferrara, A. & Madau, P. Early metal enrichment by pregalactic outflows. II. Three-dimensional simulations of blow-away. Astrophys. J. 571, 40–55 (2002)

    ADS  Google Scholar 

  66. Bromm, V., Yoshida, N. & Hernquist, L. The first supernova explosions in the Universe. Astrophys. J. 596, L135–L138 (2003)

    ADS  Google Scholar 

  67. Kitayama, T. & Yoshida, N. Supernova explosions in the early Universe: Evolution of radiative remnants and the halo destruction efficiency. Astrophys. J. 630, 675–688 (2005)

    ADS  CAS  Google Scholar 

  68. Machida, M. N., Tomisaka, K., Nakamura, F. & Fujimoto, M. Y. Low-mass star formation triggered by supernovae in primordial clouds. Astrophys. J. 622, 39–57 (2005)

    ADS  CAS  Google Scholar 

  69. Whalen, D., van Veelen, B., O'Shea, B. W. & Norman, M. L. The destruction of cosmological minihalos by primordial supernovae. Astrophys. J. 682, 49–67 (2008)

    ADS  CAS  Google Scholar 

  70. Tornatore, L., Ferrara, A. & Schneider, R. Population III stars: Hidden or disappeared? Mon. Not. R. Astron. Soc. 382, 945–950 (2007)

    ADS  Google Scholar 

  71. Cen, R. & Riquelme, M. A. Lower metal enrichment of virialized gas in minihalos. Astrophys. J. 674, 644–652 (2008)

    ADS  CAS  Google Scholar 

  72. Yoshida, N., Abel, T., Hernquist, L. & Sugiyama, N. Simulations of early structure formation: Primordial gas clouds. Astrophys. J. 592, 645–663 (2003)

    ADS  CAS  Google Scholar 

  73. Wise, J. H. & Abel, T. Resolving the formation of protogalaxies. I. Virialization. Astrophys. J. 665, 899–910 (2007)

    ADS  CAS  Google Scholar 

  74. Greif, T. H., Johnson, J. L., Klessen, R. S. & Bromm, V. The first galaxies: Assembly, cooling and the onset of turbulence. Mon. Not. R. Astron. Soc. 387, 1021–1036 (2008)

    ADS  Google Scholar 

  75. Johnson, J. L., Greif, T. H. & Bromm, V. Occurrence of metal-free galaxies in the early Universe. Mon. Not. R. Astron. Soc. 388, 26–38 (2008)

    ADS  CAS  Google Scholar 

  76. Yoshida, N., Bromm, V. & Hernquist, L. The era of massive population III stars: Cosmological implications and self-termination. Astrophys. J. 605, 579–590 (2004)

    ADS  CAS  Google Scholar 

  77. Yoshida, N., Oh, S.-P., Kitayama, T. & Hernquist, L. Early cosmological H II/He III regions and their impact on second-generation star formation. Astrophys. J. 663, 687–707 (2007)

    ADS  CAS  Google Scholar 

  78. Bromm, V., Ferrara, A., Coppi, P. S. & Larson, R. B. The fragmentation of pre-enriched primordial objects. Mon. Not. R. Astron. Soc. 328, 969–976 (2001)

    ADS  Google Scholar 

  79. Omukai, K., Tsuribe, T., Ferrara, A. & Schneider, R. Thermal and fragmentation properties of star-forming clouds in low-metallicity environments. Astrophys. J. 626, 627–643 (2005)

    ADS  CAS  Google Scholar 

  80. Bromm, V. & Loeb, A. The fragmentation of pre-enriched primordial objects. Nature 425, 812–814 (2003)

    ADS  CAS  PubMed  Google Scholar 

  81. Jappsen, A.-K., Klessen, R. S., Glover, S. C. O. & MacLow, M.-M. Star formation at very low metallicity. IV. Fragmentation does not depend on metallicity for cold initial conditions. Astrophys. J. (in the press); preprint at 〈http://arXiv.org/abs/0709.3530〉 (2007)

  82. Mac Low, M.-M. & Klessen, R. S. Control of star formation by supersonic turbulence. Rev. Mod. Phys. 76, 125–194 (2004)

    ADS  CAS  Google Scholar 

  83. Fan, X., Carilli, C. L. & Keating, B. Observational constraints on cosmic reionization. Annu. Rev. Astron. Astrophys. 44, 415–462 (2006)

    ADS  Google Scholar 

  84. Komatsu, E. et al. Five-year Wilkinson Microwave Anisotropy Probe observations: Cosmological interpretation. Astrophys. J. 180 (Suppl.). 330–376 (2009)

    Google Scholar 

  85. Holder, G. P., Haiman, Z., Kaplinghat, M. & Knox, L. The reionization history at high redshifts. II. Estimating the optical depth to Thomson scattering from cosmic microwave background polarization. Astrophys. J. 595, 13–18 (2003)

    ADS  CAS  Google Scholar 

  86. Kashlinsky, A., Arendt, R. G., Mather, J. & Moseley, S. H. Tracing the first stars with fluctuations of the cosmic infrared background. Nature 438, 45–50 (2005)

    ADS  CAS  PubMed  Google Scholar 

  87. Lamb, D. Q. & Reichart, D. E. Gamma-ray bursts as a probe of the very high redshift Universe. Astrophys. J. 536, 1–18 (2000)

    ADS  Google Scholar 

  88. Bromm, V. & Loeb, A. High-redshift gamma-ray bursts from population III progenitors. Astrophys. J. 642, 382–388 (2006)

    ADS  Google Scholar 

  89. Totani, T. et al. Implications for cosmic reionization from the optical afterglow spectrum of the gamma-ray burst 050904 at z = 6.3. Publ. Astron. Soc. Jpn. 58, 485–498 (2006)

    ADS  CAS  Google Scholar 

  90. Frebel, A., Johnson, J. L. & Bromm, V. Probing the formation of the first low-mass stars with stellar archaeology. Mon. Not. R. Astron. Soc. 380, L40–L44 (2007)

    ADS  Google Scholar 

  91. Iwamoto, N., Umeda, H., Tominaga, N., Nomoto, K. & Maeda, K. The first chemical enrichment in the Universe and the formation of hyper metal-poor stars. Science 309, 451–453 (2005)

    ADS  CAS  PubMed  Google Scholar 

  92. Furlanetto, S. R., Oh, S. P. & Briggs, F. H. Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe. Phys. Rep. 433, 181–301 (2006)

    ADS  CAS  Google Scholar 

  93. Madau, P., Meiksin, A. & Rees, M. J. 21 centimeter tomography of the intergalactic medium at high redshift. Astrophys. J. 475, 429–444 (1997)

    ADS  Google Scholar 

  94. McQuinn, M. et al. The morphology of H II regions during reionization. Mon. Not. R. Astron. Soc. 377, 1043–1063 (2007)

    ADS  CAS  Google Scholar 

  95. Gardner, J. P. et al. The James Webb Space Telescope. Space Sci. Rev. 123, 485–606 (2006)

    ADS  Google Scholar 

  96. Mackey, J., Bromm, V. & Hernquist, L. Three epochs of star formation in the high-redshift Universe. Astrophys. J. 586, 1–11 (2003)

    ADS  CAS  Google Scholar 

  97. Scannapieco, E., Madau, P., Woosley, S. E., Heger, A. & Ferrara, A. The detectability of pair-production supernovae at z 6. Astrophys. J. 633, 1031–1041 (2005)

    ADS  CAS  Google Scholar 

  98. Gao, L. & Theuns, T. Lighting the Universe with filaments. Science 317, 1527–1530 (2007)

    ADS  CAS  PubMed  Google Scholar 

  99. Yoshida, N., Sokasian, A., Hernquist, L. & Springel, V. Early structure formation and reionization in a warm dark matter cosmology. Astrophys. J. 591, L1–L4 (2003)

    ADS  Google Scholar 

  100. Beers, T. C. & Christlieb, N. The discovery and analysis of very metal-poor stars in the Galaxy. Annu. Rev. Astron. Astrophys. 43, 531–580 (2005)

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the hospitality of KITP, University of California Santa Barbara. This work was supported in part by NSF and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Bromm.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bromm, V., Yoshida, N., Hernquist, L. et al. The formation of the first stars and galaxies. Nature 459, 49–54 (2009). https://doi.org/10.1038/nature07990

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07990

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing