Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Select Drosophila glomeruli mediate innate olfactory attraction and aversion

Abstract

Fruitflies show robust attraction to food odours, which usually excite several glomeruli. To understand how the representation of such odours leads to behaviour, we used genetic tools to dissect the contribution of each activated glomerulus. Apple cider vinegar triggers robust innate attraction at a relatively low concentration, which activates six glomeruli. By silencing individual glomeruli, here we show that the absence of activity in two glomeruli, DM1 and VA2, markedly reduces attraction. Conversely, when each of these two glomeruli was selectively activated, flies showed as robust an attraction to vinegar as wild-type flies. Notably, a higher concentration of vinegar excites an additional glomerulus and is less attractive to flies. We show that activation of the extra glomerulus is necessary and sufficient to mediate the behavioural switch. Together, these results indicate that individual glomeruli, rather than the entire pattern of active glomeruli, mediate innate behavioural output.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flies are robustly attracted to apple cider vinegar, which excites six glomeruli.
Figure 2: Silencing DM1 or VA2 reduces attraction to 3 p.p.m. vinegar.
Figure 3: Restoring Or83b in DM1 and VA2 ORNs returns attraction to control levels.
Figure 4: Vinegar becomes less attractive and activates an additional glomerulus at high concentrations.
Figure 5: DM5 mediates the decrease in attraction in response to 32 p.p.m. vinegar.
Figure 6: DM1 and DM5 mediate attraction and aversion in response to ethyl butyrate.

Similar content being viewed by others

References

  1. Hildebrand, J. G. & Shepherd, G. M. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu. Rev. Neurosci. 20, 595–631 (1997)

    Article  CAS  Google Scholar 

  2. Bargmann, C. I. Comparative chemosensation from receptors to ecology. Nature 444, 295–301 (2006)

    Article  ADS  CAS  Google Scholar 

  3. Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A. & Axel, R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96, 725–736 (1999)

    Article  CAS  Google Scholar 

  4. Goldman, A. L., Van der Goes van Naters, W., Lessing, D., Warr, C. G. & Carlson, J. R. Coexpression of two functional odor receptors in one neuron. Neuron 45, 661–666 (2005)

    Article  CAS  Google Scholar 

  5. Fishilevich, E. & Vosshall, L. B. Genetic and functional subdivision of the Drosophila antennal lobe. Curr. Biol. 15, 1548–1553 (2005)

    Article  CAS  Google Scholar 

  6. Couto, A., Alenius, M. & Dickson, B. J. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol. 15, 1535–1547 (2005)

    Article  CAS  Google Scholar 

  7. Gao, Q., Yuan, B. & Chess, A. Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Nature Neurosci. 3, 780–785 (2000)

    Article  CAS  Google Scholar 

  8. Vosshall, L. B., Wong, A. M. & Axel, R. An olfactory sensory map in the fly brain. Cell 102, 147–159 (2000)

    Article  CAS  Google Scholar 

  9. Wong, A. M., Wang, J. W. & Axel, R. Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229–241 (2002)

    Article  CAS  Google Scholar 

  10. Marin, E. C., Jefferis, G. S., Komiyama, T., Zhu, H. & Luo, L. Representation of the glomerular olfactory map in the Drosophila brain. Cell 109, 243–255 (2002)

    Article  CAS  Google Scholar 

  11. Stocker, R. F., Lienhard, M. C., Borst, A. & Fischbach, K. F. Neuronal architecture of the antennal lobe in Drosophila melanogaster . Cell Tissue Res. 262, 9–34 (1990)

    Article  CAS  Google Scholar 

  12. de Bruyne, M., Foster, K. & Carlson, J. R. Odor coding in the Drosophila antenna. Neuron 30, 537–552 (2001)

    Article  CAS  Google Scholar 

  13. Hallem, E. A., Ho, M. G. & Carlson, J. R. The molecular basis of odor coding in the Drosophila antenna. Cell 117, 965–979 (2004)

    Article  CAS  Google Scholar 

  14. Ng, M. et al. Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36, 463–474 (2002)

    Article  CAS  Google Scholar 

  15. Wang, J. W., Wong, A. M., Flores, J., Vosshall, L. B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003)

    Article  CAS  Google Scholar 

  16. Fiala, A. et al. Genetically expressed cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons. Curr. Biol. 12, 1877–1884 (2002)

    Article  CAS  Google Scholar 

  17. Suh, G. S. et al. A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila . Nature 431, 854–859 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Kurtovic, A., Widmer, A. & Dickson, B. J. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446, 542–546 (2007)

    Article  ADS  CAS  Google Scholar 

  19. Clyne, P., Grant, A., O’Connell, R. & Carlson, J. R. Odorant response of individual sensilla on the Drosophila antenna. Invert. Neurosci. 3, 127–135 (1997)

    Article  CAS  Google Scholar 

  20. Ha, T. S. & Smith, D. P. A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila . J. Neurosci. 26, 8727–8733 (2006)

    Article  CAS  Google Scholar 

  21. Faucher, C., Forstreuter, M., Hilker, M. & de Bruyne, M. Behavioral responses of Drosophila to biogenic levels of carbon dioxide depend on life-stage, sex and olfactory context. J. Exp. Biol. 209, 2739–2748 (2006)

    Article  CAS  Google Scholar 

  22. Suh, G. S. et al. Light activation of an innate olfactory avoidance response in Drosophila . Curr. Biol. 17, 905–908 (2007)

    Article  CAS  Google Scholar 

  23. Stensmyr, M. C., Giordano, E., Balloi, A., Angioy, A. M. & Hansson, B. S. Novel natural ligands for Drosophila olfactory receptor neurones. J. Exp. Biol. 206, 715–724 (2003)

    Article  CAS  Google Scholar 

  24. Zhu, J., Park, K. C. & Baker, T. C. Identification of odors from overripe mango that attract vinegar flies, Drosophila melanogaster . J. Chem. Ecol. 29, 899–909 (2003)

    Article  CAS  Google Scholar 

  25. Sato, K. et al. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452, 1002–1006 (2008)

    Article  ADS  CAS  Google Scholar 

  26. Larsson, M. C. et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703–714 (2004)

    Article  CAS  Google Scholar 

  27. Wicher, D. et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452, 1007–1011 (2008)

    Article  ADS  CAS  Google Scholar 

  28. Vosshall, L. B. & Stocker, R. F. Molecular architecture of smell and taste in Drosophila . Annu. Rev. Neurosci. 30, 505–533 (2007)

    Article  CAS  Google Scholar 

  29. Stocker, R. F., Heimbeck, G., Gendre, N. & de Belle, J. S. Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. J. Neurobiol. 32, 443–456 (1997)

    Article  CAS  Google Scholar 

  30. Shang, Y., Claridge-Chang, A., Sjulson, L., Pypaert, M. & Miesenbock, G. Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 128, 601–612 (2007)

    Article  CAS  Google Scholar 

  31. Olsen, S. R., Bhandawat, V. & Wilson, R. I. Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe. Neuron 54, 89–103 (2007)

    Article  CAS  Google Scholar 

  32. Root, C. M., Semmelhack, J. L., Wong, A. M., Flores, J. & Wang, J. W. Propagation of olfactory information in Drosophila . Proc. Natl Acad. Sci. USA 104, 11826–11831 (2007)

    Article  ADS  CAS  Google Scholar 

  33. Lin, D. Y., Shea, S. D. & Katz, L. C. Representation of natural stimuli in the rodent main olfactory bulb. Neuron 50, 937–949 (2006)

    Article  CAS  Google Scholar 

  34. Kitamoto, T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92 (2001)

    Article  CAS  Google Scholar 

  35. Bellen, H. J. et al. The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167, 761–781 (2004)

    Article  CAS  Google Scholar 

  36. Asahina, K., Louis, M., Piccinotti, S. & Vosshall, L. B. A circuit supporting concentration-invariant odor perception in Drosophila . J. Biol. 8, 9 (2009)

    Article  Google Scholar 

  37. Laing, D. G., Panhuber, H. & Baxter, R. I. Olfactory properties of amines and n-butanol. Chem. Senses 3, 149–166 (1978)

    Article  CAS  Google Scholar 

  38. Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999)

    Article  CAS  Google Scholar 

  39. Kreher, S. A., Mathew, D., Kim, J. & Carlson, J. R. Translation of sensory input into behavioral output via an olfactory system. Neuron 59, 110–124 (2008)

    Article  CAS  Google Scholar 

  40. Aurand, L. W., Singleton, J. A., Bell, T. A. & Etchells, J. L. Volatile components in the vapors of natural and distilled vinegars. J. Food Sci. 31, 172–177 (1966)

    Article  CAS  Google Scholar 

  41. Fishilevich, E. et al. Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila . Curr. Biol. 15, 2086–2096 (2005)

    Article  CAS  Google Scholar 

  42. Heimbeck, G., Bugnon, V., Gendre, N., Keller, A. & Stocker, R. F. A central neural circuit for experience-independent olfactory and courtship behavior in Drosophila melanogaster . Proc. Natl Acad. Sci. USA 98, 15336–15341 (2001)

    Article  ADS  CAS  Google Scholar 

  43. Wang, Y. et al. Blockade of neurotransmission in Drosophila mushroom bodies impairs odor attraction, but not repulsion. Curr. Biol. 13, 1900–1904 (2003)

    Article  CAS  Google Scholar 

  44. Troemel, E. R., Kimmel, B. E. & Bargmann, C. I. Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans . Cell 91, 161–169 (1997)

    Article  CAS  Google Scholar 

  45. Zhao, G. Q. et al. The receptors for mammalian sweet and umami taste. Cell 115, 255–266 (2003)

    Article  CAS  Google Scholar 

  46. Root, C. M. et al. A presynaptic gain control mechanism fine-tunes olfactory behavior. Neuron 59, 311–321 (2008)

    Article  CAS  Google Scholar 

  47. Lai, S. L., Awasaki, T., Ito, K. & Lee, T. Clonal analysis of Drosophila antennal lobe neurons: diverse neuronal architectures in the lateral neuroblast lineage. Development 135, 2883–2893 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Anderson, R. Axel, C. Zuker and M. Gallio for comments on the manuscript. We thank M. Hilker for help with the design of the four-field olfactometer. We thank C. Root for generating the data presented in Supplementary Fig. 4. We thank L. Vosshall, B. Dickson and T. Lee for providing fly stocks. This work was partially supported by a research grant from the Whitehall Foundation to J.W.W. and a grant from the National Institute of Deafness and other Communication Disorders to J.W.W. (R01DC009597). J.W.W. is a Beckman Young Investigator, a Hellman Faculty scholar, and a Searle scholar.

Author Contributions J.L.S. and J.W.W. designed experiments, analysed the data, and wrote the manuscript. J.L.S. carried out the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing W. Wang.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures S1-S8 with Legends. (PDF 12028 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semmelhack, J., Wang, J. Select Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature 459, 218–223 (2009). https://doi.org/10.1038/nature07983

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07983

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing