Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins

Abstract

Selective trafficking of membrane proteins to lysosomes for destruction is required for proper cell signalling and metabolism. Ubiquitylation aids this process by specifying which proteins should be transported to the lysosome lumen by the multivesicular endosome pathway. The endosomal sorting complex required for transport (ESCRT) machinery sorts cargo labelled with ubiquitin into invaginations of endosome membranes. Then, through a highly conserved mechanism also used in cytokinesis and viral budding, it mediates the breaking off of the cargo-containing intraluminal vesicles from the perimeter membrane. The involvement of the ESCRT machinery in suppressing diseases such as cancer, neurodegeneration and infections underscores its importance to the cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endocytic internalization and sorting.
Figure 2: Composition and molecular interactions of the ESCRT machinery.
Figure 3: The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins.
Figure 4: Involvement of the ESCRT machinery in three topologically equivalent types of membrane abscission.

Similar content being viewed by others

References

  1. Gruenberg, J. & Stenmark, H. The biogenesis of multivesicular endosomes. Nature Rev. Mol. Cell Biol. 5, 317–323 (2004).

    Article  CAS  Google Scholar 

  2. Katzmann, D. J., Odorizzi, G. & Emr, S. D. Receptor downregulation and multivesicular-body sorting. Nature Rev. Mol. Cell Biol. 3, 893–905 (2002).

    Article  CAS  Google Scholar 

  3. d'Azzo, A., Bongiovanni, A. & Nastasi, T. E3 ubiquitin ligases as regulators of membrane protein trafficking and degradation. Traffic 6, 429–441 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Hicke, L. & Dunn, R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu. Rev. Cell Dev. Biol. 19, 141–172 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Hicke, L. & Riezman, H. Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84, 277–287 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Galan, J. M., Moreau, V., Andre, B., Volland, C. & Haguenauer-Tsapis, R. Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease. J. Biol. Chem. 271, 10946–10952 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Babst, M., Katzmann, D. J., Snyder, W. B., Wendland, B. & Emr, S. D. Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev. Cell 3, 283–289 (2002). This paper describes the first biochemical and functional characterization of ESCRT-II.

    Article  CAS  PubMed  Google Scholar 

  8. Babst, M., Katzmann, D. J., Estepa-Sabal, E. J., Meerloo, T. & Emr, S. D. Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev. Cell 3, 271–282 (2002). This is the first biochemical and functional characterization of ESCRT-III, and identification of Vps20–Vps32 and Vps24–Vps2 as subcomplexes of ESCRT-III.

    Article  CAS  PubMed  Google Scholar 

  9. Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001). This paper coins the ESCRT name and provides the concept of an endosomal machinery that sorts ubiquitylated cargo into MVEs. It describes the first biochemical and functional characterization of ESCRT-I.

    Article  CAS  PubMed  Google Scholar 

  10. Bache, K. G., Brech, A., Mehlum, A. & Stenmark, H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J. Cell Biol. 162, 435–442 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Katzmann, D. J., Stefan, C. J., Babst, M. & Emr, S. D. Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J. Cell Biol. 162, 413–423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu, Q., Hope, L. W., Brasch, M., Reinhard, C. & Cohen, S. N. TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation. Proc. Natl Acad. Sci. USA 100, 7626–7631 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hurley, J. H. ESCRT complexes and the biogenesis of multivesicular bodies. Curr. Opin. Cell Biol. 20, 4–11 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Williams, R. L. & Urbe, S. The emerging shape of the ESCRT machinery. Nature Rev. Mol. Cell Biol. 8, 355–368 (2007).

    Article  CAS  Google Scholar 

  15. Prag, G. et al. The Vps27/Hse1 complex is a GAT domain-based scaffold for ubiquitin-dependent sorting. Dev. Cell 12, 973–986 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hofmann, K. & Falquet, L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem. Sci. 26, 347–350 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Raiborg, C., Bache, K. G., Mehlum, A., Stang, E. & Stenmark, H. Hrs recruits clathrin to early endosomes. EMBO J. 20, 5008–5021 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McCullough, J. et al. Activation of the endosome-associated ubiquitin isopeptidase AMSH by STAM, a component of the multivesicular body-sorting machinery. Curr. Biol. 16, 160–165 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Gaullier, J.-M. et al. FYVE fingers bind PtdIns(3)P. Nature 394, 432–433 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Burd, C. G. & Emr, S. D. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domain. Mol. Cell 2, 157–162 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Raiborg, C. et al. FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. J. Cell Sci. 114, 2255–2263 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Roxrud, I., Raiborg, C., Pedersen, N. M., Stang, E. & Stenmark, H. An endosomally localized isoform of Eps15 interacts with Hrs to mediate degradation of epidermal growth factor receptor. J. Cell Biol. 180, 1205–1218 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leung, K. F., Dacks, J. B. & Field, M. C. Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. Traffic 9, 1698–1716 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Puertollano, R. & Bonifacino, J. S. Interactions of GGA3 with the ubiquitin sorting machinery. Nature Cell Biol. 6, 244–251 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Puertollano, R. Interactions of TOM1L1 with the multivesicular body sorting machinery. J. Biol. Chem. 280, 9258–9264 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Seet, L. F., Liu, N., Hanson, B. J. & Hong, W. Endofin recruits TOM1 to endosomes. J. Biol. Chem. 279, 4670–4679 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Stuchell, M.D. et al. The human endosomal sorting complex required for transport (ESCRT-I) and its role in HIV-1 budding. J. Biol. Chem. 279, 36059–36071 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Kostelansky, M. S. et al. Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer. Cell 129, 485–498 (2007). By combining data from several crystallographic studies, this paper describes a model of almost the whole ESCRT-I from yeast.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morita, E. et al. Identification of human MVB12 proteins as ESCRT-I subunits that function in HIV budding. Cell Host Microbe 2, 41–53 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chu, T., Sun, J., Saksena, S. & Emr, S. D. New component of ESCRT-I regulates endosomal sorting complex assembly. J. Cell Biol. 175, 815–823 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Im, Y. J. & Hurley, J. H. Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex. Dev. Cell 14, 902–913 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hierro, A. et al. Structure of the ESCRT-II endosomal trafficking complex. Nature 431, 221–225 (2004). This is the first determination of the core of yeast ESCRT-II, showing that the core consists of eight winged-helix domains and that ESCRT-II consists of one Vps22, one Vps36 and two copies of Vps25.

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Teo, H., Perisic, O., Gonzalez, B. & Williams, R. L. ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes. Dev. Cell 7, 559–569 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Slagsvold, T. et al. Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain. J. Biol. Chem. 280, 19600–19606 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Hirano, S. et al. Structural basis of ubiquitin recognition by mammalian Eap45 GLUE domain. Nature Struct. Mol. Biol. 13, 1031–1032 (2006).

    Article  CAS  Google Scholar 

  36. Alam, S. L. et al. Structural basis for ubiquitin recognition by the human ESCRT-II EAP45 GLUE domain. Nature Struct. Mol. Biol. 13, 1029–1030 (2006).

    Article  CAS  Google Scholar 

  37. Teo, H. et al. ESCRT-I core and ESCRT-II GLUE domain structures reveal central role for GLUE domain in linking to ESCRT-I and membranes. Cell 125, 99–111 (2006). This paper shows that the GLUE domain of yeast Vps36 binds Vps28 in ESCRT-I and ubiquitin via yeast-specific NZF zinc fingers, and that another face of the GLUE domain binds the endosomal lipid PtdIns(3)P.

    Article  CAS  PubMed  Google Scholar 

  38. Lata, S. et al. Structural basis for autoinhibition of ESCRT-III CHMP3. J. Mol. Biol. 378, 816–825 (2008).

    Article  CAS  Google Scholar 

  39. Teis, D., Saksena, S. & Emr, S. D. Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev. Cell 15, 578–589 (2008). On the basis of biochemical studies of intact yeast cells, this paper provides a model for the ordered assembly of ESCRT-III on membranes.

    Article  CAS  PubMed  Google Scholar 

  40. Saksena, S., Wahlman, J., Teis, D., Johnson, A. E. & Emr, S. D. Functional reconstitution of ESCRT-III assembly and disassembly. Cell 136, 97–109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rue, S. M., Mattei, S., Saksena, S. & Emr, S. D. Novel Ist1–Did2 complex functions at a late step in multivesicular body sorting. Mol. Biol. Cell 19, 475–484 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nature Cell Biol. 4, 394–398 (2002). This paper shows that Hrs functions in degradative endosomal sorting of ubiquitylated membrane proteins, and that ESCRT-0 is concentrated in restricted microdomains of the endosome membrane.

    Article  CAS  PubMed  Google Scholar 

  43. Hirano, S. et al. Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting. Nature Struct. Mol. Biol. 13, 272–277 (2006).

    Article  CAS  Google Scholar 

  44. Fisher, R. D. et al. Structure and ubiquitin binding of the ubiquitin-interacting motif. J. Biol. Chem. 278, 28976–28984 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Haglund, K. et al. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nature Cell Biol. 5, 461–466 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Huang, F., Kirkpatrick, D., Jiang, X., Gygi, S. & Sorkin, A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol. Cell 21, 737–748 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Umebayashi, K., Stenmark, H. & Yoshimori, T. Ubc4/5 and c-Cbl continue to ubiquitinate EGF receptor after internalization to facilitate polyubiquitination and degradation. Mol. Biol. Cell 19, 3454–3462 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bilodeau, P. S., Urbanowski, J. L., Winistorfer, S. C. & Piper, R. C. The Vps27p Hse1p complex binds ubiquitin and mediates endosomal protein sorting. Nature Cell Biol. 4, 534–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Raiborg, C., Wesche, J., Malerød, L. & Stenmark, H. Flat clathrin coats on endosomes mediate degradative protein sorting by scaffolding Hrs in dynamic microdomains. J. Cell Sci. 119, 2414–2424 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Sachse, M., Urbe, S., Oorschot, V., Strous, G. J. & Klumperman, J. Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol. Biol. Cell 13, 1313–1328 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Komada, M. & Kitamura, N. Growth factor-induced tyrosine phosphorylation of Hrs, a novel 115-kilodalton protein with a structurally conserved putative zinc finger domain. Mol. Cell. Biol. 15, 6213–6221 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Takeshita, T. et al. Cloning of a novel signal-transducing adaptor molecule containing an SH3 domain and ITAM. Biochem. Biophys. Res. Commun. 225, 1035–1039 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Polo, S. et al. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416, 451–455 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Hoeller, D. et al. Regulation of ubiquitin-binding proteins by monoubiquitination. Nature Cell Biol. 8, 163–169 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, B. Y., Olzmann, J. A., Barsh, G. S., Chin, L. S. & Li, L. Spongiform neurodegeneration-associated E3 ligase mahogunin ubiquitylates TSG101 and regulates endosomal trafficking. Mol. Biol. Cell 18, 1129–1142 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Doyotte, A., Russell, M. R., Hopkins, C. R. & Woodman, P. G. Depletion of TSG101 forms a mammalian “Class E” compartment: a multicisternal early endosome with multiple sorting defects. J. Cell Sci. 118, 3003–3017 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Hanson, P. I., Roth, R., Lin, Y. & Heuser, J. E. Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J. Cell Biol. 180, 389–402 (2008). By using deep-etch electron microscopy of the plasma membrane of cells overexpressing ESCRT subunits, this paper provides spectacular images suggesting that membrane deformation is driven by circular arrays of Vps32 multimers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lata, S. et al. Helical structures of ESCRT-III are disassembled by VPS4. Science 321, 1354–1357 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ghazi-Tabatabai, S. et al. Structure and disassembly of filaments formed by the ESCRT-III subunit Vps24. Structure 16, 1345–1356 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Pons, V. et al. Hrs and SNX3 functions in sorting and membrane invagination within multivesicular bodies. PLoS Biol. 6, e214 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Obita, T. et al. Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449, 735–739 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Samson, R. Y., Obita, T., Freund, S. M., Williams, R. L. & Bell, S. D. A role for the ESCRT system in cell division in Archaea. Science 322, 1710–1713, (2008). This paper shows that ESCRT-III and Vps4 function in cell division in the archaebacterium Sulfolobus acidocaldarius.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Spitzer, C. et al. The Arabidopsis elch mutant reveals functions of an ESCRT component in cytokinesis. Development 133, 4679–4689 (2006). This is the first demonstration that ESCRT proteins are involved in cytokinesis.

    Article  CAS  PubMed  Google Scholar 

  65. Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912 (2007). This paper provides the first demonstration that ESCRT proteins are involved in mammalian cytokinesis and identifies CEP55 as a key recruiter of ESCRTs to the midbody.

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Morita, E. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 26, 4215–4227 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pineda-Molina, E. et al. The crystal structure of the C-terminal domain of Vps28 reveals a conserved surface required for Vps20 recruitment. Traffic 7, 1007–1016 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Martin-Serrano, J. The role of ubiquitin in retroviral egress. Traffic 8, 1297–1303 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Morita, E. & Sundquist, W. I. Retrovirus budding. Annu. Rev. Cell Dev. Biol. 20, 395–425 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Langelier, C. et al. Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J. Virol. 80, 9465–9480 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bowers, K. et al. Degradation of endocytosed epidermal growth factor and virally-ubiquitinated MHC class I is independent of mammalian ESCRTII. J. Biol. Chem. 81, 5094–5105 (2005).

    Google Scholar 

  72. von Schwedler, U. K. et al. The protein network of HIV budding. Cell 114, 701–713 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. McCullough, J., Fisher, R. D., Whitby, F. G., Sundquist, W. I. & Hill, C. P. ALIX–CHMP4 interactions in the human ESCRT pathway. Proc. Natl Acad. Sci. USA 105, 7687–7691 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Amerik, A. Y., Nowak, J., Swaminathan, S. & Hochstrasser, M. The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. Mol. Biol. Cell 11, 3365–3380 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Swaminathan, S., Amerik, A. Y. & Hochstrasser, M. The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast. Mol. Biol. Cell 10, 2583–2594 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nikko, E. & Andre, B. Evidence for a direct role of the Doa4 deubiquitinating enzyme in protein sorting into the MVB pathway. Traffic 8, 566–581 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Row, P. E., Prior, I. A., McCullough, J., Clague, M. J. & Urbe, S. The ubiquitin isopeptidase UBPY regulates endosomal ubiquitin dynamics and is essential for receptor down-regulation. J. Biol. Chem. 281, 12618–12624 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Mizuno, E., Kobayashi, K., Yamamoto, A., Kitamura, N. & Komada, M. A deubiquitinating enzyme UBPY regulates the level of protein ubiquitination on endosomes. Traffic 7, 1017–1031 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genet. 36, 585–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Nixon, R. A. & Cataldo, A. M. Lysosomal system pathways: genes to neurodegeneration in Alzheimer's disease. J. Alzheimers Dis. 9, 277–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Bjørkøy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Filimonenko, M. et al. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol. 179, 485–500 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rusten, T. E., Filimonenko, M., Rodahl, L. M., Stenmark, H. & Simonsen, A. ESCRTing autophagic clearance of aggregating proteins. Autophagy 4, 233–236 (2008).

    Article  CAS  Google Scholar 

  86. Lee, J. A., Beigneux, A., Ahmad, S. T., Young, S. G. & Gao, F. B. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr. Biol. 17, 1561–1567 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Kim, B. Y. & Akazawa, C. Endosomal trafficking of EGFR regulated by hVps18 via interaction of MVB sorting machinery. Biochem. Biophys. Res. Commun. Advance online publication doi:10.1016/j.bbrc.2007.08.046 (2007).

  88. Parkinson, N. et al. ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 67, 1074–1077 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Skibinski, G. et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nature Genet. 37, 806–808 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Li, L. & Cohen, S. N. Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell 85, 319–329 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Xu, Z., Liang, L., Wang, H., Li, T. & Zhao, M. HCRP1, a novel gene that is downregulated in hepatocellular carcinoma, encodes a growth-inhibitory protein. Biochem. Biophys. Res. Commun. 311, 1057–1066 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Li, J., Belogortseva, N., Porter, D. & Park, M. Chmp1A functions as a novel tumor suppressor gene in human embryonic kidney and ductal pancreatic tumor cells. Cell Cycle 7, 2886–2893 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Krempler, A., Henry, M. D., Triplett, A. A. & Wagner, K. U. Targeted deletion of the Tsg101 gene results in cell cycle arrest at G1/S and p53-independent cell death. J. Biol. Chem. 277, 43216–43223 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Vaccari, T. & Bilder, D. The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating Notch trafficking. Dev. Cell 9, 687–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Thompson, B. J. et al. Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila . Dev. Cell 9, 711–720 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Moberg, K. H., Schelble, S., Burdick, S. K. & Hariharan, I. K. Mutations in erupted, the Drosophila ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev. Cell 9, 699–710 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Philips, J. A., Porto, M. C., Wang, H., Rubin, E. J. & Perrimon, N. ESCRT factors restrict mycobacterial growth. Proc. Natl Acad. Sci. USA 105, 3070–3075 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vieira, O. V. et al. Acquisition of Hrs, an essential component of phagosomal maturation, is impaired by mycobacteria. Mol. Cell. Biol. 24, 4593–4604 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Singh, S. B., Davis, A. S., Taylor, G. A. & Deretic, V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313, 1438–1441 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  100. Wollert, T., Wunder, C., Lippincott-Schwartz, J. & Hurley, J. H. Membrane scission by the ESCRT-III complex. Nature 458, 159–160 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.R. is a postdoctoral fellow of the Norwegian Cancer Society. We also thank the Research Council of Norway, the Novo-Nordisk Foundation and the Hartmann Family Foundation for supporting our research.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to H.S. (stenmark@ulrik.uio.no).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raiborg, C., Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452 (2009). https://doi.org/10.1038/nature07961

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07961

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing