Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optimized dynamical decoupling in a model quantum memory

Abstract

Any quantum system, such as those used in quantum information or magnetic resonance, is subject to random phase errors that can dramatically affect the fidelity of a desired quantum operation or measurement1. In the context of quantum information, quantum error correction techniques have been developed to correct these errors, but resource requirements are extraordinary. The realization of a physically tractable quantum information system will therefore be facilitated if qubit (quantum bit) error rates are far below the so-called fault-tolerance error threshold1, predicted to be of the order of 10-3–10-6. The need to realize such low error rates motivates a search for alternative strategies to suppress dephasing in quantum systems2. Here we experimentally demonstrate massive suppression of qubit error rates by the application of optimized dynamical decoupling3,4,5,6,7,8 pulse sequences, using a model quantum system capable of simulating a variety of qubit technologies. We demonstrate an analytically derived pulse sequence9, UDD, and find novel sequences through active, real-time experimental feedback. The latter sequences are tailored to maximize error suppression without the need for a priori knowledge of the ambient noise environment, and are capable of suppressing errors by orders of magnitude compared to other existing sequences (including the benchmark multi-pulse spin echo10,11). Our work includes the extension of a treatment to predict qubit decoherence12,13 under realistic conditions, yielding strong agreement between experimental data and theory for arbitrary pulse sequences incorporating nonidealized control pulses. These results demonstrate the robustness of qubit memory error suppression through dynamical decoupling techniques across a variety of qubit technologies11,14,15,16.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: CPMG and UDD pulse sequence schematics.
Figure 2: 9 Be + qubit structure and coherent control.
Figure 3: Pulse sequence performance in the presence of various noise spectra.
Figure 4: Nelder-Mead pulse-sequence optimization using Ohmic spectrum and n = 6.

References

  1. 1

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000)

    MATH  Google Scholar 

  2. 2

    Zoller, P. et al. Quantum information processing and communication — strategic report on current status, visions and goals for research in Europe. Eur. Phys. J. D 36, 203–228 (2005)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Haeberlen, U. High Resolution NMR in Solids (Advances in Magnetic Resonance Series, Academic, 1976)

    Google Scholar 

  4. 4

    Viola, L. & Lloyd, S. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  5. 5

    Zanardi, P. Symmetrizing evolutions. Phys. Lett. A 258, 77–82 (1999)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  6. 6

    Vitali, D. & Tombesi, P. Using parity kicks for decoherence control. Phys. Rev. A 59, 4178–4186 (1999)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Byrd, M. S. & Lidar, D. A. Empirical determination of dynamical decoupling operations. Phys. Rev. A 67, 012324 (2003)

    ADS  Article  Google Scholar 

  8. 8

    Khodjasteh, K. & Lidar, D. A. Fault-tolerant quantum dynamical decoupling. Phys. Rev. Lett. 95, 180501 (2005)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Uhrig, G. Keeping a quantum bit alive by optimized π-pulse sequences. Phys. Rev. Lett. 98, 100504 (2007)

    ADS  Article  Google Scholar 

  10. 10

    Vandersypen, L. M. K. & Chuang, I. NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2004)

    ADS  Article  Google Scholar 

  11. 11

    Witzel, W. & Das Sarma, S. Multiple-pulse coherence enhancement of solid state spin qubits. Phys. Rev. Lett. 98, 077601 (2007)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Uhrig, G. Exact results on dynamical decoupling by π pulses in quantum information processes. N. J. Phys. 10, 083024 (2008)

    MathSciNet  Article  Google Scholar 

  13. 13

    Cywinski, L., Lutchyn, R., Nave, C. & Das Sarma, S. How to enhance dephasing time in superconducting qubits. Phys. Rev. B 77, 174509 (2008)

    ADS  Article  Google Scholar 

  14. 14

    Yao, W., Liu, R. B. & Sham, L. J. Restoring coherence lost to a slow interacting mesoscopic spin bath. Phys. Rev. Lett. 98, 077602 (2007)

    ADS  Article  Google Scholar 

  15. 15

    Zhang, W. et al. Long-time electron spin storage via dynamical suppression of hyperfine-induced decoherence in a quantum dot. Phys. Rev. B 77, 125336 (2008)

    ADS  Article  Google Scholar 

  16. 16

    Yang, W. & Liu, R. B. Universality of Uhrig dynamical decoupling for suppressing qubit pure dephasing and relaxation. Phys. Rev. Lett. 101, 180403 (2008)

    ADS  Article  Google Scholar 

  17. 17

    Kuopanportti, P. et al. Suppression of 1/fα noise in one-qubit systems. Phys. Rev. A 77, 032334 (2008)

    ADS  Article  Google Scholar 

  18. 18

    Lee, B., Witzel, W. & Das Sarma, S. Universal pulse sequence to minimize spin dephasing in the central spin decoherence problem. Phys. Rev. Lett. 100, 160505 (2008)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Faoro, L. & Ioffe, L. B. Quantum two level systems and Kondo-like traps as possible sources of decoherence in superconducting qubits. Phys. Rev. Lett. 96, 047001 (2006)

    ADS  Article  Google Scholar 

  20. 20

    Koch, R. H., DiVincenzo, D. P. & Clarke, J. Model for 1/f flux noise in SQUIDs and qubits. Phys. Rev. Lett. 98, 267003 (2007)

    ADS  Article  Google Scholar 

  21. 21

    Leggett, A. J. et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–85 (1987)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Taylor, J. M. & Calarco, T. Wigner crystals of ions as quantum hard drives. Phys. Rev. A 78, 062331 (2008)

    ADS  Article  Google Scholar 

  23. 23

    Itano, W. M. et al. Bragg diffraction from crystallized ion plasmas. Science 279, 686–689 (1998)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Mitchell, T. B. et al. Direct observations of structural phase transitions in planar crystallized ion plasmas. Science 282, 1290–1293 (1998)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Huang, X.-P., Bollinger, J. J., Mitchell, T. B. & Itano, W. M. Phase-locked rotation of crystallized non-neutral plasmas by rotating electric fields. Phys. Rev. Lett. 80, 73–76 (1998)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Jensen, M. J., Hasegawa, T., Bollinger, J. J. & Dubin, D. H. E. Rapid heating of a strongly coupled plasma near the solid-liquid phase transition. Phys. Rev. Lett. 94, 025001 (2005)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Brewer, L. R. et al. Static properties of a non-neutral 9Be+ ion plasma. Phys. Rev. A 38, 859–873 (1988)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Itano, W. M. et al. Quantum projection noise: Population fluctuations in two-level systems. Phys. Rev. A 47, 3554–3570 (1993)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Pasini, S., Fischer, T., Karbach, P. & Uhrig, G. Optimization of short coherent control pulses. Phys. Rev. A 77, 032315 (2008)

    ADS  Article  Google Scholar 

  30. 30

    Weinacht, T. C. & Bucksbaum, P. H. Controlling the shape of a quantum wavefunction. Nature 397, 233–235 (1999)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank L. Cywinski, S. Das Sarma, V. V. Dobrovitski, X. Hu, E. Knill, S. Lyon, G. Uhrig, and W. Witzel for discussions. We also thank D. Hanneke, C. Ospelkaus and D. J. Wineland for comments on the manuscript, and C. Nelson for technical assistance. We acknowledge research funding from IARPA and the NIST Quantum Information Program. M.J.B. acknowledges fellowship support from IARPA and Georgia Tech., and H.U. acknowledges support from CSIR. This manuscript is a contribution of the US NIST and is not subject to US copyright.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael J. Biercuk.

Supplementary information

Supplementary Information

This file contains Supplementary Data and Methods. (PDF 133 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Biercuk, M., Uys, H., VanDevender, A. et al. Optimized dynamical decoupling in a model quantum memory. Nature 458, 996–1000 (2009). https://doi.org/10.1038/nature07951

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing