Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Narrow graphene nanoribbons from carbon nanotubes


Graphene nanoribbons (GNRs) are materials with properties distinct from those of other carbon allotropes1,2,3,4,5. The all-semiconducting nature of sub-10-nm GNRs could bypass the problem of the extreme chirality dependence of the metal or semiconductor nature of carbon nanotubes (CNTs) in future electronics1,2. Currently, making GNRs using lithographic3,4,6, chemical7,8,9 or sonochemical1 methods is challenging. It is difficult to obtain GNRs with smooth edges and controllable widths at high yields. Here we show an approach to making GNRs by unzipping multiwalled carbon nanotubes by plasma etching of nanotubes partly embedded in a polymer film. The GNRs have smooth edges and a narrow width distribution (10–20 nm). Raman spectroscopy and electrical transport measurements reveal the high quality of the GNRs. Unzipping CNTs with well-defined structures in an array will allow the production of GNRs with controlled widths, edge structures, placement and alignment in a scalable fashion for device integration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Making GNRs from CNTs.
Figure 2: Images of GNRs converted from MWCNTs.
Figure 3: Raman imaging and spectra of GNRs.
Figure 4: Room-temperature electrical properties of GNR devices.

Similar content being viewed by others


  1. Li, X. L. et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008)

    Article  ADS  CAS  Google Scholar 

  2. Wang, X. R. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008)

    Article  ADS  Google Scholar 

  3. Chen, Z. H., Lin, Y. M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Physica E (Amsterdam) 40, 228–232 (2007)

    Article  ADS  CAS  Google Scholar 

  4. Han, M. Y., Ozyilmaz, B., Zhang, Y. B. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  5. Cresti, A. et al. Charge transport in disordered graphene-based low dimensional materials. Nano Res. 1, 361–394 (2008)

    Article  CAS  Google Scholar 

  6. Tapaszto, L., Dobrik, G., Lambin, P. & Biro, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature Nanotechnol. 3, 397–401 (2008)

    Article  CAS  Google Scholar 

  7. Datta, S. S., Strachan, D. R., Khamis, S. M. & Johnson, A. T. C. Crystallographic etching of few-layer graphene. Nano Lett. 8, 1912–1915 (2008)

    Article  ADS  CAS  Google Scholar 

  8. Ci, L. J. et al. Controlled nanocutting of graphene. Nano Res. 1, 116–122 (2008)

    Article  CAS  Google Scholar 

  9. Campos-Delgado, J. et al. Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano Lett. 8, 2773–2778 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  ADS  CAS  Google Scholar 

  13. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996)

    Article  ADS  CAS  Google Scholar 

  16. Barone, V., Hod, O. & Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748–2754 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Son, Y. W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)

    Article  ADS  Google Scholar 

  18. Yang, L. et al. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007)

    Article  ADS  Google Scholar 

  19. Dai, H. J. Carbon nanotubes: opportunities and challenges. Surf. Sci. 500, 218–241 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Jorio, A., Dresselhaus, M. S. & Dresselhaus, G. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications. (Springer, 2008)

    Book  Google Scholar 

  21. Jiao, L. Y. et al. Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing. J. Am. Chem. Soc. 130, 12612–12613 (2008)

    Article  CAS  Google Scholar 

  22. Lin, Y. M. & Avouris, P. Strong suppression of electrical noise in bilayer graphene nanodevices. Nano Lett. 8, 2119–2125 (2008)

    Article  ADS  CAS  Google Scholar 

  23. Jiao, L. Y., Xian, X. J. & Liu, Z. F. Manipulation of ultralong single-walled carbon nanotubes at macroscale. J. Phys. Chem. C 112, 9963–9965 (2008)

    Article  CAS  Google Scholar 

  24. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  ADS  CAS  Google Scholar 

  25. Graf, D. et al. Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 7, 238–242 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Ni, Z. H., Wang, Y. Y., Yu, T. & Shen, Z. X. Raman spectroscopy and imaging of graphene. Nano Res. 1, 273–291 (2008)

    Article  CAS  Google Scholar 

  27. Winters, H. F., Coburn, J. W. & Chuang, T. J. Surface processes in plasma-assisted etching environments. J. Vac. Sci. Technol. B 1, 469–480 (1983)

    Article  CAS  Google Scholar 

  28. Moser, J., Barreiro, A. & Bachtoldb, A. Current-induced cleaning of graphene. Appl. Phys. Lett. 91, 163513 (2007)

    Article  ADS  Google Scholar 

  29. Lin, Y. M., Perebeinos, V., Chen, Z. H. & Avouris, P. Electrical observation of subband formation in graphene nanoribbons. Phys. Rev. B 78, 161409 (2008)

    Article  ADS  Google Scholar 

Download references


This work was supported by Microelectronics Advanced Research Corporation - Materials, Structures, and Devices Center, Intel and the US Office of Naval Research.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hongjie Dai.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figures S1-S10 with Legends, Supplementary Table S1, Supplementary Data and Supplementary References (PDF 442 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, L., Zhang, L., Wang, X. et al. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing