The Beagle in a bottle


Why infer evolution when you can watch it happen in real time? This is the basic premise of using populations of fast-replicating microorganisms in test tubes to study evolution. The approach, known as experimental evolution, has provided a way of testing many of the key hypotheses that arose from the modern evolutionary synthesis. However, details of the unnatural histories of microorganisms in test tubes can be extrapolated only so far. Potential future directions for the approach include studying microbial evolution for its own sake under the most natural conditions possible in the test tube, and testing some qualitative theories of genome evolution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The rise of experimental evolution.
Figure 2: Adaptive radiation in a heterogeneous environment.
Figure 3: Cooperation and cheating in Pseudomonas aeruginosa.
Figure 4: Experimental assay to show bacteriophage infecting bacteria.


  1. 1

    Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (John Murray, 1859).

    Google Scholar 

  2. 2

    Bell, G. Selection: The Mechanism of Evolution (Oxford Univ. Press, 2007).

    Google Scholar 

  3. 3

    Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. Long term experimental evolution in Escherichia coli. 1. Adaptation and divergence during 2000 generations. Am. Nat. 138, 1315–1341 (1991). This paper provided the first demonstration of long-term evolutionary dynamics in real time.

    Google Scholar 

  4. 4

    Dallinger, W. On the life-history of a minute septic organism: with an account of experiments made to determine its thermal death point. Proc. R. Soc. Lond. 27, 332–350 (1878).

    Google Scholar 

  5. 5

    Huxley, J. Evolution: The Modern Synthesis (Allen & Unwin, 1942).

    Google Scholar 

  6. 6

    Elena, S. F. & Lenski, R. E. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nature Rev. Genet. 4, 457–469 (2003).

    CAS  PubMed  Google Scholar 

  7. 7

    Lenski, R. E. & Travisano, M. Dynamics of adaptation and diversification — a 10,000-generation experiment with bacterial populations. Proc. Natl Acad. Sci. USA 91, 6808–6814 (1994).

    ADS  CAS  PubMed  Google Scholar 

  8. 8

    Woods, R., Schneider, D., Winkworth, C. L., Riley, M. A. & Lenski, R. E. Tests of parallel molecular evolution in a long-term experiment with Escherichia coli . Proc. Natl Acad. Sci. USA 103, 9107–9112 (2006).

    ADS  CAS  PubMed  Google Scholar 

  9. 9

    Ostrowski, E. A., Woods, R. J. & Lenski, R. E. The genetic basis of parallel and divergent phenotypic responses in evolving populations of Escherichia coli . Proc. R. Soc. Lond. B 275, 277–284 (2008).

    CAS  Google Scholar 

  10. 10

    Blount, Z. D. & Grogan, D. W. New insertion sequences of Sulfolobus: functional properties and implications for genome evolution in hyperthermophilic Archaea. Mol. Microbiol. 55, 312–325 (2005).

    CAS  PubMed  Google Scholar 

  11. 11

    Goddard, M. R., Godfray, H. C. J. & Burt, A. Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434, 636–640 (2005).

    ADS  CAS  PubMed  Google Scholar 

  12. 12

    Colegrave, N. Sex releases the speed limit on evolution. Nature 420, 664–666 (2002).

    ADS  CAS  PubMed  Google Scholar 

  13. 13

    Fisher, R. A. The Genetical Theory of Natural Selection (Oxford Univ. Press, 1930).

    Google Scholar 

  14. 14

    Muller, H. J. Some genetic aspects of sex. Am. Nat. 8, 118–138 (1932).

    Google Scholar 

  15. 15

    Drake, J. W. Spontaneous mutation. Annu. Rev. Genet. 25, 125–146 (1991).

    CAS  PubMed  Google Scholar 

  16. 16

    Giraud, A., Radman, M., Matic, I. & Taddei, F. The rise and fall of mutator bacteria. Curr. Opin. Microbiol. 4, 582–585 (2001).

    CAS  PubMed  Google Scholar 

  17. 17

    Taddei, F. et al. Role of mutator alleles in adaptive evolution. Nature 387, 700–702 (1997).

    ADS  CAS  PubMed  Google Scholar 

  18. 18

    Giraud, A. et al. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291, 2606–2608 (2001). This paper identifies the selective forces acting on the mutation rate of pathogenic bacteria in vivo.

    ADS  CAS  PubMed  Google Scholar 

  19. 19

    Sniegowski, P. D., Gerrish, P. J. & Lenski, R. E. Evolution of high mutation rates in experimental populations of E. coli . Nature 387, 703–705 (1997).

    ADS  CAS  PubMed  Google Scholar 

  20. 20

    Pal, C., Macia, M. D., Oliver, A., Schachar, I. & Buckling, A. Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 450, 1079–1081 (2007).

    ADS  CAS  PubMed  Google Scholar 

  21. 21

    de Visser, J., Zeyl, C. W., Gerrish, P. J., Blanchard, J. L. & Lenski, R. E. Diminishing returns from mutation supply rate in asexual populations. Science 283, 404–406 (1999).

    ADS  CAS  Google Scholar 

  22. 22

    Gause, G. F. The Struggle for Existence (Williams & Wilkins, 1934).

    Google Scholar 

  23. 23

    Rainey, P. B. & Travisano, M. Adaptive radiation in a heterogeneous environment. Nature 394, 69–72 (1998). This paper shows that competition in a spatially variable environment drives the diversification of bacteria into spatial niche specialists.

    ADS  CAS  PubMed  Google Scholar 

  24. 24

    MacLean, R. C. & Bell, G. Experimental adaptive radiation in Pseudomonas . Am. Nat. 160, 569–581 (2002).

    PubMed  Google Scholar 

  25. 25

    Helling, R. B., Vargas, C. N. & Adams, J. Evolution of Escherichia coli during growth in a constant environment. Genetics 116, 349–358 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Rosenzweig, R. F., Sharp, R. R., Treves, D. S. & Adams, J. Microbial evolution in a simple unstructured environment — genetic differentiation in Escherichia coli . Genetics 137, 903–917 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Treves, D. S., Manning, S. & Adams, J. Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli. Mol. Biol. Evol. 15, 789–797 (1998).

    CAS  PubMed  Google Scholar 

  28. 28

    Elena, S. F. & Lenski, R. E. Long-term experimental evolution in Escherichia coli. VII. Mechanisms maintaining genetic variability within populations. Evolution 51, 1058–1067 (1997).

    PubMed  Google Scholar 

  29. 29

    Rozen, D. E. & Lenski, R. E. Long-term experimental evolution in Escherichia coli. VIII. Dynamics of a balanced polymorphism. Am. Nat. 155, 24–35 (2000).

    PubMed  Google Scholar 

  30. 30

    Novak, M., Pfeiffer, T., Lenski, R. E., Sauer, U. & Bonhoeffer, S. Experimental tests for an evolutionary trade-off between growth rate and yield in E. coli. Am. Nat. 168, 242–251 (2006).

    PubMed  Google Scholar 

  31. 31

    West, S. A., Diggle, S. P., Buckling, A., Gardner, A. & Griffins, A. S. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst. 38, 53–77 (2007).

    Google Scholar 

  32. 32

    Crespi, B. J. The evolution of social behavior in microorganisms. Trends Ecol. Evol. 16, 178–183 (2001).

    PubMed  Google Scholar 

  33. 33

    Darwin, C. The Descent of Man, and Selection in Relation to Sex (John Murray, 1871).

    Google Scholar 

  34. 34

    Hamilton, W. D. The genetical evolution of social behaviour, I & II. J. Theor. Biol. 7, 1–52 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Harrison, E. F. & Buckling, A. Hypermutability impedes cooperation in pathogenic bacteria. Curr. Biol. 15, 1968–1971 (2005).

    CAS  PubMed  Google Scholar 

  36. 36

    Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004). This paper disentangles the role of relatedness and kin competition in driving the evolution of cooperation.

    ADS  CAS  PubMed  Google Scholar 

  37. 37

    Mehdiabadi, N. J. et al. Kin preference in a social microbe. Nature 442, 881–882 (2006).

    ADS  CAS  PubMed  Google Scholar 

  38. 38

    Thompson, J. N. The Coevolutionary Process (Univ. Chicago Press, 1994).

    Google Scholar 

  39. 39

    Hamilton, W. D., Axelrod, R. & Tanese, R. Sexual reproduction as an adaptation to resist parasites. Proc. Natl Acad. Sci. USA 87, 3566–3573 (1990).

    ADS  CAS  PubMed  Google Scholar 

  40. 40

    Bohannan, B. J. M. & Lenski, R. E. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol. Lett. 3, 362–377 (2000).

    Google Scholar 

  41. 41

    Buckling, A. & Rainey, P. B. Antagonistic coevolution between a bacterium and a bacteriophage. Proc. R. Soc. Lond. B 269, 931–936 (2002).

    Google Scholar 

  42. 42

    Forde, S. E., Thompson, J. N. & Bohannan, B. J. M. Gene flow reverses an adaptive cline in a coevolving host–parasitoid interaction. Am. Nat. 169, 794–801 (2007).

    PubMed  Google Scholar 

  43. 43

    Chao, L., Levin, B. R. & Stewart, F. M. A complex community in a simple habitat: an experimental study with bacteria and phage. Ecology 58, 369–378 (1977). This paper demonstrates extremely rapid real-time co-evolution between natural enemies, suggesting that co-evolution is a crucial process in ecology and evolution.

    Google Scholar 

  44. 44

    Buckling, A. & Rainey, P. B. The role of parasites in sympatric and allopatric diversification. Nature 420, 496–499 (2002).

    ADS  CAS  PubMed  Google Scholar 

  45. 45

    Modi, R. I. & Adams, J. Coevolution in bacterial-plasmid populations. Evolution 45, 656–667 (1991).

    PubMed  Google Scholar 

  46. 46

    Gratten, J. et al. A localized negative genetic correlation constrains microevolution of coat color in wild sheep. Science 319, 318–320 (2008).

    ADS  CAS  PubMed  Google Scholar 

  47. 47

    Benmayor, R., Buckling, A., Bonsall, M. B., Brockhurst, M. A. & Hodgson, D. J. The interactive effects of parasites, disturbance, and productivity on experimental adaptive radiations. Evolution 62, 467–477 (2008).

    PubMed  Google Scholar 

  48. 48

    Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    ADS  CAS  PubMed  Google Scholar 

  49. 49

    Ackermann, M., Stearns, S. C. & Jenal, U. Senescence in a bacterium with asymmetric division. Science 300, 1920 (2003). This was the first demonstration that bacteria can age.

    CAS  PubMed  Google Scholar 

  50. 50

    Stewart, E. J., Madden, R., Paul, G. & Taddei, F. Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol. 3, 295–300 (2005).

    CAS  Google Scholar 

  51. 51

    Ackermann, M., Schauerte, A., Stearns, S. C. & Jenal, U. Experimental evolution of aging in a bacterium. BMC Evol. Biol. 7, 126 (2007).

    PubMed  PubMed Central  Google Scholar 

  52. 52

    Elena, S. F., Cooper, V. S. & Lenski, R. E. Punctuated evolution caused by selection of rare beneficial mutations. Science 272, 1802–1804 (1996).

    ADS  CAS  PubMed  Google Scholar 

  53. 53

    Bantinaki, E. et al. Adaptive divergence in experimental populations of Pseudomonas fluorescens. III. Mutational origins of wrinkly spreader diversity. Genetics 176, 441–453 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Schluter, D. The Ecology of Adaptive Radiations (Oxford Univ. Press, 2000).

    Google Scholar 

  55. 55

    Dettman, J. R., Sirjusingh, C., Kohn, L. M. & Anderson, J. B. Incipient speciation by divergent adaptation and antagonistic epistasis in yeast. Nature 447, 585–588 (2007).

    ADS  CAS  PubMed  Google Scholar 

  56. 56

    Wagner, A. Robustness and Evolvability in Living Systems (Princeton Univ. Press, 2005).

    Google Scholar 

  57. 57

    Pal, C. et al. Chance and necessity in the evolution of minimal metabolic networks. Nature 440, 667–670 (2006).

    ADS  CAS  PubMed  Google Scholar 

  58. 58

    Harrison, R., Papp, B., Pal, C., Oliver, S. G. & Delneri, D. Plasticity of genetic interactions in metabolic networks of yeast. Proc. Natl Acad. Sci. USA 104, 2307–2312 (2007).

    ADS  CAS  PubMed  Google Scholar 

  59. 59

    Mortlock, R. C. E. Microorganisms as Model Systems for Studying Evolution (Plenum, 1984).

    Google Scholar 

  60. 60

    Wichman, H. A., Badgett, M. R., Scott, L. A., Boulianne, C. M. & Bull, J. J. Different trajectories of parallel evolution during viral adaptation. Science 285, 422–424 (1999).

    CAS  PubMed  Google Scholar 

  61. 61

    Velicer, G. J. et al. Comprehensive mutation identification in an evolved bacterial cooperator and its cheating ancestor. Proc. Natl Acad. Sci. USA 103, 8107–8112 (2006).

    ADS  CAS  PubMed  Google Scholar 

  62. 62

    Dunham, M. J. et al. Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae . Proc. Natl Acad. Sci. USA 99, 16144–16149 (2002).

    ADS  CAS  PubMed  Google Scholar 

  63. 63

    De Vos, D. et al. Study of pyoverdine type and production by Pseudomonas aeruginosa isolated from cystic fibrosis patients: prevalence of type II pyoverdine isolates and accumulation of pyoverdine-negative mutations. Arch. Microbiol. 175, 384–388 (2001).

    CAS  PubMed  Google Scholar 

  64. 64

    Smith, E. E. et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl Acad. Sci. USA 103, 8487–8492 (2006).

    ADS  CAS  PubMed  Google Scholar 

  65. 65

    Meyer, J. M., Neely, A., Stintzi, A., Georges, C. & Holder, I. A. Pyoverdin is essential for virulence of Pseudomonas aeruginosa . Infect. Immun. 64, 518–523 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Bjarnasholt, T. & Givskov, M. Quorum-sensing blockade as a strategy for enhancing host defences againts bacterial pathogens. Phil. Trans. R. Soc. Lond. B 362, 1212–1223 (2007).

    Google Scholar 

  67. 67

    Perron, G. G., Zasloff, M. & Bell, G. Experimental evolution of resistance to an antimicrobial peptide. Proc. R. Soc. Lond. B 273, 251–256 (2006).

    CAS  Google Scholar 

  68. 68

    Bolotin, A. et al. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nature Biotechnol. 22, 1554–1558 (2004).

    CAS  Google Scholar 

  69. 69

    Manefield, M., Griffiths, R. I., Leigh, M. B., Fisher, R. & Whiteley, A. S. Functional and compositional comparison of two activated sludge communities remediating coking effluent. Environ. Microbiol. 7, 715–722 (2005).

    CAS  PubMed  Google Scholar 

  70. 70

    Levin, B. R. & Bull, J. J. Population and evolutionary dynamics of phage therapy. Nature Rev. Microbiol. 2, 166–173 (2004).

    CAS  Google Scholar 

Download references


We thank the Royal Society and the Leverhulme Trust for funding.

Author information



Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at

Correspondence should be addressed to A.B. (

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buckling, A., Craig Maclean, R., Brockhurst, M. et al. The Beagle in a bottle. Nature 457, 824–829 (2009).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing