Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interdimensional universality of dynamic interfaces


Despite the complexity and diversity of nature, there exists universality in the form of critical scaling laws among various dissimilar systems and processes such as stock markets1, earthquakes2, crackling noise3, lung inflation4 and vortices in superconductors5. This universality is mainly independent of the microscopic details, depending only on the symmetry and dimension of the system. Exploring how universality is affected by the system dimensions is an important unresolved problem. Here we demonstrate experimentally that universality persists even at a dimensionality crossover in ferromagnetic nanowires. As the wire width decreases, the magnetic domain wall dynamics changes from elastic creep6,7,8,9 in two dimensions to a particle-like stochastic behaviour10 in one dimension. Applying finite-size scaling, we find that all our experimental data in one and two dimensions (including the crossover regime) collapse onto a single curve, signalling universality at the criticality transition. The crossover to the one-dimensional regime occurs at a few hundred nanometres, corresponding to the integration scale for modern nanodevices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nonequilibrium criticality of DW speed along ferromagnetic nanowires.
Figure 2: Finite-size scaling and universal crossover behaviour of DW criticality.
Figure 3: Variation of activation diameter with respect to wire width.

Similar content being viewed by others


  1. Lux, T. & Marchesi, M. Scaling and criticality in a stochastic multi-agent model of a financial market. Nature 397, 498–500 (1999)

    Article  ADS  CAS  Google Scholar 

  2. Carlson, J. M., Langer, J. S. & Shaw, B. E. Dynamics of earthquake faults. Rev. Mod. Phys. 66, 657–670 (1994)

    Article  ADS  Google Scholar 

  3. Sethna, J. P., Dahmen, K. A. & Myers, C. R. Crackling noise. Nature 410, 242–250 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Suki, B., Barabási, A.-L., Hantos, Z., Peták, F. & Stanley, H. E. Avalanches and power-law behaviour in lung inflation. Nature 368, 615–618 (1994)

    Article  ADS  CAS  Google Scholar 

  5. Blatter, G., Feigel'man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994)

    Article  ADS  CAS  Google Scholar 

  6. Lemerle, S. et al. Domain wall creep in an Ising ultrathin magnetic film. Phys. Rev. Lett. 80, 849–852 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Chauve, P., Giamarchi, T. & Le Doussal, P. Creep and depinning in disordered media. Phys. Rev. B 62, 6241–6267 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Cayssol, F., Ravelosona, D., Chappert, C., Ferré, J. & Jamet, J. P. Domain wall creep in magnetic wires. Phys. Rev. Lett. 92, 107202 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Metaxas, P. J. et al. Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy. Phys. Rev. Lett. 99, 217208 (2007)

    Article  ADS  CAS  Google Scholar 

  10. Derrida, B. Velocity and diffusion constant of a periodic one-dimensional hopping model. J. Stat. Phys. 31, 433–450 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality: an explanation of 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987)

    Article  ADS  CAS  Google Scholar 

  12. Fisher, D. S. Interface fluctuations in disordered systems: 5-ε expansion and failure of dimensional reduction. Phys. Rev. Lett. 56, 1964–1967 (1986)

    Article  ADS  CAS  Google Scholar 

  13. Cizeau, P., Zapperi, S., Durin, G. & Stanley, H. E. Dynamics of a ferromagnetic domain wall and the Barkhausen effect. Phys. Rev. Lett. 79, 4669–4672 (1997)

    Article  ADS  CAS  Google Scholar 

  14. Perković, O., Dahmen, K. & Sethna, J. P. Avalanches, Barkhausen noise, and plain old criticality. Phys. Rev. Lett. 75, 4528–4531 (1995)

    Article  ADS  Google Scholar 

  15. Le Doussal, P. & Vinokur, V. M. Creep in one dimension and phenomenological theory of glass dynamics. Physica C 254, 63–68 (1995)

    Article  ADS  CAS  Google Scholar 

  16. Kim, D.-H., Choe, S.-B. & Shin, S.-C. Direct observation of Barkhausen avalanche in Co thin films. Phys. Rev. Lett. 90, 087203 (2003)

    Article  ADS  Google Scholar 

  17. Ryu, K.-S., Akinaga, H. & Shin, S.-C. Tunable scaling behaviour observed in Barkhausen criticality of a ferromagnetic film. Nature Phys. 3, 547–550 (2007)

    Article  ADS  CAS  Google Scholar 

  18. Pommier, J. et al. Magnetic reversal in ultrathin ferromagnetic films with perpendicular anisotropy: domain observations. Phys. Rev. Lett. 65, 2054–2057 (1990)

    Article  ADS  CAS  Google Scholar 

  19. Kirby, R. D., Shen, J. X., Hardy, R. J. & Sellmyer, D. J. Magnetization reversal in nanoscale magnetic films with perpendicular anisotropy. Phys. Rev. B 49, 10810–10813 (1994)

    Article  ADS  CAS  Google Scholar 

  20. Choe, S.-B. & Shin, S.-C. Phase diagram of three contrasting magnetization reversal phases in uniaxial ferromagnetic thin films. Appl. Phys. Lett. 80, 1791–1793 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Skomski, R., Zeng, H., Zheng, M. & Sellmyer, D. J. Magnetic localization in transition-metal nanowires. Phys. Rev. B 62, 3900–3904 (2000)

    Article  ADS  CAS  Google Scholar 

Download references


This study was supported by KOSEF through the NRL programme (R0A-2007-000-20032-0). H.-W.L. was supported by KOSEF (R01-2007-000-20281-0, R11-2000-071). K.-J.K. was supported by the Seoul Science Fellowship and the Seoul R&BD programme. J.-C.L. was supported by KOSEF (R11-2008-095-01000-0). K.-H.S. was supported by the KIST Institutional Program and by the TND Frontier Project funded by MEST.

Author Contributions S.-B.C. planned and supervised the project; K.-J.K. designed and performed the experiments; C.-W.L., Y.J.C., and. S.S. prepared sample films; J.-C.L. and K.-H.S. carried out patterning process; S.-M.A. and K.-S.L. characterized the films and nanostructures; K.-J.K., S.-B.C. and H.-W.L. performed theoretical analysis and wrote the manuscript.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Sug-Bong Choe or Hyun-Woo Lee.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Discussions, Supplementary References and Supplementary Figures 1-4 with Legends. (PDF 944 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KJ., Lee, JC., Ahn, SM. et al. Interdimensional universality of dynamic interfaces. Nature 458, 740–742 (2009).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing