Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metamorphic enzyme assembly in polyketide diversification


Natural product chemical diversity is fuelled by the emergence and ongoing evolution of biosynthetic pathways in secondary metabolism1. However, co-evolution of enzymes for metabolic diversification is not well understood, especially at the biochemical level. Here, two parallel assemblies with an extraordinarily high sequence identity from Lyngbya majuscula form a β-branched cyclopropane in the curacin A pathway (Cur), and a vinyl chloride group in the jamaicamide pathway (Jam). The components include a halogenase, a 3-hydroxy-3-methylglutaryl enzyme cassette for polyketide β-branching, and an enoyl reductase domain. The halogenase from CurA, and the dehydratases (ECH1s), decarboxylases (ECH2s) and enoyl reductase domains from both Cur and Jam, were assessed biochemically to determine the mechanisms of cyclopropane and vinyl chloride formation. Unexpectedly, the polyketide β-branching pathway was modified by introduction of a γ-chlorination step on (S)-3-hydroxy-3-methylglutaryl mediated by Cur halogenase, a non-haem Fe(ii), α-ketoglutarate-dependent enzyme2. In a divergent scheme, Cur ECH2 was found to catalyse formation of the α,β enoyl thioester, whereas Jam ECH2 formed a vinyl chloride moiety by selectively generating the corresponding β,γ enoyl thioester of the 3-methyl-4-chloroglutaconyl decarboxylation product. Finally, the enoyl reductase domain of CurF specifically catalysed an unprecedented cyclopropanation on the chlorinated product of Cur ECH2 instead of the canonical α,β C = C saturation reaction. Thus, the combination of chlorination and polyketide β-branching, coupled with mechanistic diversification of ECH2 and enoyl reductase, leads to the formation of cyclopropane and vinyl chloride moieties. These results reveal a parallel interplay of evolutionary events in multienzyme systems leading to functional group diversity in secondary metabolites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of enzyme assemblies in the Cur and Jam pathways.
Figure 2: Halogenation and cyclopropanation in the Cur pathway.
Figure 3: Comparison of ECH 2 s and ERs in Cur and Jam pathways.
Figure 4: Impact of enzyme assembly evolution on β-branching chemical diversity.

Similar content being viewed by others


  1. Fischbach, M. A., Walsh, C. T. & Clardy, J. The evolution of gene collectives: How natural selection drives chemical innovation. Proc. Natl Acad. Sci. USA 105, 4601–4608 (2008)

    Article  ADS  CAS  Google Scholar 

  2. Vaillancourt, F. H., Yeh, E., Vosburg, D. A., Garneau-Tsodikova, S. & Walsh, C. T. Nature’s inventory of halogenation catalysts: oxidative strategies predominate. Chem. Rev. 106, 3364–3378 (2006)

    Article  CAS  Google Scholar 

  3. Fischbach, M. A. & Clardy, J. One pathway, many products. Nature Chem. Biol. 3, 353–355 (2007)

    Article  CAS  Google Scholar 

  4. Austin, M. B., O’Maille, P. E. & Noel, J. P. Evolving biosynthetic tangos negotiate mechanistic landscapes. Nature Chem. Biol. 4, 217–222 (2008)

    Article  CAS  Google Scholar 

  5. Edwards, D. J. et al. Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula . Chem. Biol. 11, 817–833 (2004)

    Article  MathSciNet  CAS  Google Scholar 

  6. Verdier-Pinard, P. et al. Structure-activity analysis of the interaction of curacin A, the potent colchicine site antimitotic agent, with tubulin and effects of analogs on the growth of MCF-7 breast cancer cells. Mol. Pharmacol. 53, 62–76 (1998)

    Article  CAS  Google Scholar 

  7. Chang, Z. et al. Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula . J. Nat. Prod. 67, 1356–1367 (2004)

    Article  CAS  Google Scholar 

  8. Blasiak, L. C., Vaillancourt, F. H., Walsh, C. T. & Drennan, C. L. Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis. Nature 440, 368–371 (2006)

    Article  ADS  CAS  Google Scholar 

  9. Vaillancourt, F. H., Yeh, E., Vosburg, D. A., O’Connor, S. E. & Walsh, C. T. Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis. Nature 436, 1191–1194 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Vaillancourt, F. H., Yin, J. & Walsh, C. T. SyrB2 in syringomycin E biosynthesis is a nonheme FeII α-ketoglutarate- and O2-dependent halogenase. Proc. Natl Acad. Sci. USA 102, 10111–10116 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Galonic, D. P., Vaillancourt, F. H. & Walsh, C. T. Halogenation of unactivated carbon centers in natural product biosynthesis: Trichlorination of leucine during barbamide biosynthesis. J. Am. Chem. Soc. 128, 3900–3901 (2006)

    Article  CAS  Google Scholar 

  12. Chang, Z. et al. The barbamide biosynthetic gene cluster: a novel marine cyanobacterial system of mixed polyketide synthase (PKS)-non-ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit. Gene 296, 235–247 (2002)

    Article  CAS  Google Scholar 

  13. Flatt, P. M. et al. Characterization of the initial enzymatic steps of barbamide biosynthesis. J. Nat. Prod. 69, 938–944 (2006)

    Article  CAS  Google Scholar 

  14. Galonic, D. P., Barr, E. W., Walsh, C. T., Bollinger, J. M. & Krebs, C. Two interconverting Fe(IV) intermediates in aliphatic chlorination by the halogenase CytC3. Nature Chem. Biol. 3, 113–116 (2007)

    Article  CAS  Google Scholar 

  15. Gu, L. C. et al. Metabolic coupling of dehydration and decarboxylation in the curacin A pathway: functional identification of a mechanistically diverse enzyme pair. J. Am. Chem. Soc. 128, 9014–9015 (2006)

    Article  CAS  Google Scholar 

  16. Calderone, C. T., Kowtoniuk, W. E., Kelleher, N. L., Walsh, C. T. & Dorrestein, P. C. Convergence of isoprene and polyketide biosynthetic machinery: isoprenyl-S-carrier proteins in the pksX pathway of Bacillus subtilis . Proc. Natl Acad. Sci. USA 103, 8977–8982 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Calderone, C. T., Iwig, D. F., Dorrestein, P. C., Kelleher, N. L. & Walsh, C. T. Incorporation of nonmethyl branches by lsoprenoid-like logic: Multiple beta-alkylation events in the biosynthesis of myxovirescin A1. Chem. Biol. 14, 835–846 (2007)

    Article  CAS  Google Scholar 

  18. Nordling, E., Jornvall, H. & Persson, B. Medium-chain dehydrogenases/reductases (MDR)—Family characterizations including genome comparisons and active site modelling. Eur. J. Biochem. 269, 4267–4276 (2002)

    Article  CAS  Google Scholar 

  19. Geders, T. W. et al. Crystal structure of the ECH2 catalytic domain of CurF from Lyngbya majuscula—insights into a decarboxylase involved in polyketide chain β-branching. J. Biol. Chem. 282, 35954–35963 (2007)

    Article  CAS  Google Scholar 

  20. Dorrestein, P. C. et al. Facile detection of acyl and peptidyl intermediates on thiotemplate carrier domains via phosphopantetheinyl elimination reactions during tandem mass spectrometry. Biochemistry 45, 12756–12766 (2006)

    Article  CAS  Google Scholar 

  21. Kopka, J., Ohlrogge, J. B. & Jaworski, J. G. Analysis of in vivo levels of acyl-thioesters with gas-chromatography mass-spectrometry of the butylamide derivative. Anal. Biochem. 224, 51–60 (1995)

    Article  CAS  Google Scholar 

  22. Butcher, R. A. et al. The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis . Proc. Natl Acad. Sci. USA 104, 1506–1509 (2007)

    Article  ADS  CAS  Google Scholar 

  23. El-Sayed, A. K. et al. Characterization of the mupirocin biosynthesis gene cluster from Pseudomonas fluorescens NCIMB 10586. Chem. Biol. 10, 419–430 (2003)

    Article  CAS  Google Scholar 

  24. Simunovic, V. et al. Myxovirescin A biosynthesis is directed by hybrid polyketide synthases/nonribosomal peptide synthetase, 3-hydroxy-3-methylglutaryl-CoA synthases, and trans-acting acyltransferases. ChemBioChem 7, 1206–1220 (2006)

    Article  CAS  Google Scholar 

  25. Pulsawat, N., Kitani, S. & Nihira, T. Characterization of biosynthetic gene cluster for the production of virginiamycin M, a streptogramin type A antibiotic, in Streptomyces virginiae . Gene 393, 31–42 (2007)

    Article  CAS  Google Scholar 

  26. Piel, J. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc. Natl Acad. Sci. USA 99, 14002–14007 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Piel, J. et al. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei . Proc. Natl Acad. Sci. USA 101, 16222–16227 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Kelly, W. L. et al. Characterization of the aminocarboxycyclopropane-forming enzyme CmaC. Biochemistry 46, 359–368 (2007)

    Article  CAS  Google Scholar 

  29. Neumann, C. S. & Walsh, C. T. Biosynthesis of (-)-(1S,2R)-allocoronamic acyl thioester by an FeII-dependent halogenase and a cyclopropane-forming flavoprotein. J. Am. Chem. Soc. 130, 14022–14023 (2008)

    Article  CAS  Google Scholar 

Download references


We thank C. T. Walsh and C. T. Calderone for ACP constructs; S. M. Chernyak, H. Liu and J. Byun for mass spectrometry assistance; P. C. López for NMR assistance; T. M. Ramsey for chiral cyclopronanecarboxylic acid; and D. L. Akey for discussions. This work was supported by grants from the National Institutes of Health (to D.H.S. and J.L.S.), a graduate fellowship from Eli Lilly & Co. and a Rackham Predoctoral Fellowship (to L.G.).

Author Contributions L.G., W.H.G and D.H.S. designed the experiments, analysed data and wrote the paper; L.G. performed the experiments; B.W. and K.H. recorded FTICR mass spectra and analysed the data; T.W.G. and J.L.S. modelled Cur ECH2 structure with the chlorinated substrate and designed site mutagenesis; A.K. and P.W. synthesized the chlorinated butylamide derivatives; R.V.G. and L.G. made Jam ECH1 and ECH2 constructs; W.H.G. provided DNA of Jam enzymes and analysed NMR data for isotope-labelled curacin A.

Author information

Authors and Affiliations


Corresponding author

Correspondence to David H. Sherman.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figures 1-16 with Legends, Supplementary Tables 1-2 and Supplementary References. (PDF 7311 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, L., Wang, B., Kulkarni, A. et al. Metamorphic enzyme assembly in polyketide diversification. Nature 459, 731–735 (2009).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing