Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Obliquity-paced Pliocene West Antarctic ice sheet oscillations

Abstract

Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth’s orbital geometry control the ice ages1, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles2. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the ‘warmer-than-present’ early-Pliocene epoch (5–3 Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming3. Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, 40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth’s axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to 3 °C warmer than today4 and atmospheric CO2 concentration was as high as 400 p.p.m.v. (refs 5, 6). The evidence is consistent with a new ice-sheet/ice-shelf model7 that simulates fluctuations in Antarctic ice volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt8 under conditions of elevated CO2.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Location of the ANDRILL McMurdo Ice Shelf Project AND-1B drill site in the northwestern corner of the Ross ice shelf.
Figure 2: Stratigraphic and chronologic summary of the upper 600 m of the AND-1B core showing 38 sedimentary cycles of ice-sheet advance, retreat and re-advance during the last 5 Myr.
Figure 3: Detailed analysis of early-Pliocene sedimentary cycles in the AND-1B core showing lithofacies interpretations of glacimarine environments.
Figure 4: Detailed analysis of late early-Pliocene sedimentary cycles in the AND-1B core showing lithofacies interpretations of glacimarine environments.

References

  1. Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth’s orbit; pacemaker of the ice ages. Science 194, 1121–1132 (1976)

    ADS  CAS  Article  Google Scholar 

  2. Raymo, M. E. & Huybers, P. Unlocking the mysteries of the ice ages. Nature 415, 284–285 (2008)

    ADS  Article  Google Scholar 

  3. Intergovernmental. Panel on Climate Change in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) 707–709 (Cambridge Univ. Press, 2007)

  4. Kim, S. J. & Crowley, T. J. Increased Pliocene North Atlantic Deep Water: cause or consequence of Pliocene warming. Paleoceanography 15, 451–455 (2000)

    ADS  Article  Google Scholar 

  5. Van Der Burgh, J., Visscher, H., Dilcher, D. & Kürschner, M. Paleoatmospheric signatures in Neogene fossil leaves. Science 260, 1788–1790 (1993)

    ADS  CAS  Article  Google Scholar 

  6. Raymo, M. E., Grant, B., Horowitz, M. & Rau, G. H. Mid-Pliocene warmth: stronger greenhouse and stronger conveyor. Mar. Micropaleontol. 27, 313–326 (1996)

    ADS  Article  Google Scholar 

  7. Pollard, D. & DeConto, R. M. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature (this issue).

  8. Huybers, P. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313, 508–511 (2006)

    ADS  CAS  Article  Google Scholar 

  9. Shackleton, N. J. et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307, 620–623 (1984)

    ADS  CAS  Article  Google Scholar 

  10. Hall, I. R., McCave, I. N., Shackleton, N. J., Weedon, G. P. & Harris, S. E. Intensified deep Pacific inflow and ventilation in Pleistocene glacial times. Nature 412, 809–812 (2001)

    ADS  CAS  Article  Google Scholar 

  11. Crundwell, M., Scott, G., Naish, T. R. & Carter, L. Glacial–interglacial ocean-climate variability spanning the Mid-Pleistocene transition in the temperate Southwest Pacific, ODP site 1123. Palaeogeogr. Palaeoclimatol. Palaeoecol. 260, 202–229 (2008)

    Article  Google Scholar 

  12. Dwyer, G., Baker, P. & Cronin, T. North Atlantic deepwater temperature change during late Pliocene and late Quaternary climatic cycles. Science 270, 1347–1350 (1995)

    ADS  CAS  Article  Google Scholar 

  13. Ding, Z. L. et al. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record. Paleoceanography 17, 5–21 (2002)

    Article  Google Scholar 

  14. Naish, T. R. Constraints on the amplitude of late Pliocene eustatic sea-level fluctuations: new evidence from the New Zealand shallow-marine sediment record. Geology 25, 1139–1142 (2007)

    ADS  Article  Google Scholar 

  15. Raymo, M. E., Lisiecki, L. & Nisancioglu, K. Plio–Pleistocene ice volume, Antarctic climate, and the global δ18O record. Science 313, 492–495 (2006)

    ADS  CAS  Article  Google Scholar 

  16. Mercer, J. H. West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature 271, 321–325 (1978)

    ADS  Article  Google Scholar 

  17. Dowsett, J. & Cronin, T. M. High eustatic sea level during the middle Pliocene: evidence from the southeastern U.S. Atlantic Coastal Plain. Geology 18, 435–438 (1990)

    ADS  Article  Google Scholar 

  18. Naish, T. R. & Wilson, G. Constraints on the amplitude of Mid-Pliocene (3.6–2.4 Ma) eustatic sea-level fluctuations from the New Zealand shallow-marine sediment record. Phil. Trans. R. Soc. A 367, 169–187 (2009)

    ADS  CAS  Article  Google Scholar 

  19. Kennett, J. P. & Hodell, D. A. Evidence for relative climatic stability of Antarctica during the Early Pliocene: A marine perspective. Geogr. Ann. 75A, 202–222 (1993)

    Google Scholar 

  20. Naish, T. R. et al. in Antarctica: A Keystone in a Changing World (eds Cooper, A. K. et al.) 71–82 (Proc. 10th Internat. Symp. Antarctic Earth Sci., National Academies Press, 2008)

    Google Scholar 

  21. Naish, T. R., Powell, R. D. & Levy, R. H. (eds) Studies from the ANDRILL, McMurdo Ice Shelf Project, Antarctica - Initial Science Report on AND-1B (Terra Antartica Vol. 14, 2007)

    Google Scholar 

  22. Dunbar, G., Naish, T. R., Powell, R. D. & Barrett, P. J. Constraining the amplitude of late Oligocene bathymetric changes in western Ross Sea during orbitally-induced oscillations in the East Antarctic Ice Sheet: (1) Implications for glacimarine sequence stratigraphic model. Palaeogeogr. Palaeoclimatol. Palaeoecol. 260, 50–65 (2008)

    Article  Google Scholar 

  23. Powell, R. D. & Cooper, J. M. A sequence stratigraphic model for temperate, glaciated continental shelves. Spec. Publ. Geol. Soc. (Lond.) 203, 215–244 (2003)

    Article  Google Scholar 

  24. Lewis, A. R. et al. Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proc. Natl Acad. Sci. USA 105, 10676–10689 (2008)

    ADS  CAS  Article  Google Scholar 

  25. Naish, T. R., Carter, L., Wolff, E., Pollard, D. & Powell, R. D. in Developments in Earth & Environmental Sciences Vol. 8 (eds Florindo, F. & Seigert M.) 465–529 (Elsevier, 2009)

    Google Scholar 

  26. Lisiecki, L. E. & Raymo, M. E. A. Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20 10.1029/2005PA001153 (2005)

  27. McKay, R. et al. Retreat of the Ross Ice Shelf since the Last Glacial Maximum derived from sediment cores in deep basins surrounding Ross Island. Palaeogeogr. Palaeoclimatol. Palaeoecol. 260, 245–261 (2008)

    Article  Google Scholar 

  28. Young, M. & Bradley, R. in Milankovitch and Climate (eds Berger, A. et al.) 707–713 (Riedel, 1984)

    Book  Google Scholar 

  29. Lisiecki, L. E., Raymo, M. E. & Curry, W. B. Atlantic overturning responses to Late Pleistocene climate forcings. Nature 456, 85–88 (2008)

    ADS  CAS  Article  Google Scholar 

  30. Toggweiler, J. R., Russell, J. L. & Carson, S. R. Mid-latitude westerlies, atmospheric CO2, and climate change. Paleoceanography 21 10.1029/2005PA001154 (2007)

  31. Huybers, P. & Tziperman, E. Integrated summer insolation forcing and 40,000-year glacial cycles: the perspective from an ice-sheet/energy-balance model. Paleoceanography 23 10.1029/2007PA001463 (2008)

  32. Hill, D. J., Haywood, A. M., Hindmarsh, R. C. A. & Valdes, P. J. in Deep Time Perspectives on Climate Change: Marrying the Signals from Computer Models and Biological Proxies (eds Williams, M. et al.) 517–538 (Micropalaeontol. Soc. Spec. Publ., Geological Society of London, 2007)

    Book  Google Scholar 

  33. Scherer, R. P. et al. Antarctic records of precession paced, insolation-driven warming during the early Pleistocene Marine Isotope Stage 31. Geophys. Res. Lett. 35 10.1029/2007gl032254 (2008)

  34. Dowdeswell, J. A., Elverhøi, A. & Spielhagen, R. Glacimarine sedimentary processes and facies on the Polar North Atlantic margins. Quat. Sci. Rev. 17, 243–272 (1998)

    ADS  Article  Google Scholar 

  35. Ó Cofaigh, C. &. Dowdeswell, J. A. Laminated sediments in glacimarine environments: diagnostic criteria for their interpretation. Quat. Sci. Rev. 20, 1411–1436 (2001)

    ADS  Article  Google Scholar 

  36. Cowan, E. A., Seramur, K. C., Cai, J. & Powell, R. D. Cyclic sedimentation produced by fluctuations in meltwater discharge, tides and marine productivity in an Alaskan fjord. Sedimentology 46, 1109–1126 (1999)

    ADS  Article  Google Scholar 

  37. Domack, E. W., Jacobson, E. A., Shipp, S. & Anderson, J. B. Late Pleistocene-Holocene retreat of the West Antarctic ice-sheet system in the Ross Sea, Part 2: Sedimentologic and stratigraphic signature. Geol. Soc. Am. Bull. 111, 1517–1536 (1999)

    ADS  Article  Google Scholar 

  38. Powell, R. D. et al. Facies analysis and depositional environments in CRP-3: implications for Oligocene glacial history. Terra Antartica 8, 207–217 (2001)

    Google Scholar 

  39. Powell, R. D. & Domack, E. W. in Modern and Past Glacial Environments (ed. Menzies, J.) Ch. 12, 361–389 (Butterworth-Heinemann, 2002)

    Book  Google Scholar 

  40. Cody, R., Levy, R., Harwood, D. & Sadler, P. Thinking outside the zone: high-resolution quantitative biochronology for the Antarctic Neogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 260, 92–121 (2008)

    Article  Google Scholar 

  41. Cody, R, et al. Quantitative biostratigraphic modelling of the AND-1B drillcore. Glob. Planet. Change (submitted)

  42. Chappell, J. et al. Reconciliation of Late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth Planet. Sci. Lett. 141, 227–236 (1996)

    ADS  CAS  Article  Google Scholar 

  43. Tiedemann, R., Sarnthein, M. & Shackleton, N. J. Astronomical timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659. Paleoceanography 9, 619–638 (1994)

    ADS  Article  Google Scholar 

  44. Miller, K. G. et al. The Phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

The ANDRILL project is a multinational collaboration between the Antarctic programmes of Germany, Italy, New Zealand and the United States. Antarctica New Zealand is the project operator and developed the drilling system in collaboration with A. Pyne. Antarctica New Zealand supported the drilling team at Scott Base; Raytheon Polar Services Corporation supported the science team at McMurdo Station and the Crary Science and Engineering Laboratory. The ANDRILL Science Management Office at the University of Nebraska-Lincoln provided science planning and operational support. The scientific studies are jointly supported by the US National Science Foundation, the New Zealand Foundation for Research Science and Technology and the Royal Society of New Zealand Marsden Fund, the Italian Antarctic Research Programme, the German Research Foundation and the Alfred Wegener Institute for Polar and Marine Research.

Author Contributions All authors contributed to acquisition, analysis and interpretation of data presented in this paper. T.N.: overall coordination of writing, sedimentology, cyclostratigraphic and climatic interpretations; R.P.: integration, glacial facies, glacial process and interpretations of ice-sheet history; R.L.: integration, biochronology and age-model construction; L.K.: core description and sedimentological interpretation; F.N.: core description and physical properties interpretation; M.P.: petrological interpretation; R.S.: integration, diatom biostratigraphic and environmental interpretations; F.T.: clast abundance, composition and provenance interpretations; G.W.: palaeomagnetic stratigraphy and age-model construction; T. Wilson: core description, structural and tectonic constraints; L.C.: sedimentology & palaeo-oceanographic interpretations; R. McKay: sedimentology, glacial facies interpretations and ice-sheet history; J. Ross: 40A/39Ar geochronology and age-model construction; D.W.: diatom biostratigraphy and environmental interpretations; P.B.: glacial process and interpretations of ice-sheet history; G.B.: glacimarine sequence stratigraphy and facies interpretations; R.C.: biochronology and age-model construction; E.C.: glacial facies, glacial process and interpretations of ice-sheet history; J.C.: biochronology and age-model construction; R.D.: ice-sheet-model data interpretation and integration; G.D.: core description, facies and sedimentological interpretation; N.D.: 40Ar/39Ar geochronology and petrological interpretation; F.F.: palaeomagnetic interpretations and age-model construction; C.G.: core description and physical properties interpretation; I.G.: geochronology and age-model construction; M.H.: biostratigraphy and environmental interpretation; D. Harwood: diatom biostratigraphy and biochronology; D. Hansaraj: regional seismic stratigraphic context; D. Helling: geochemical interpretation; S.H.: regional stratigraphic framework and tectonic constraints; L.H.: time-series analysis; P.H.: Milankovitch forcing and palaeoclimatic interpretations; G.K.: geochemical interpretation; P.K.: volcanic petrology and volcanological interpretation; A.L.: core description and structural analysis; P.M.: diatom biostratigraphy and environmental interpretations; D.M.: core description and physical properties interpretation; K.M.: core description; W.M.: 40Ar/39Ar geochronology and volcanological interpretation; C.M.: core description and structural analysis; R. Morin: borehole description and down-hole geophysics; C.O.: palaeomagnetic stratigraphy and age-model construction; T.P.: core and description and structural geology; D. Persico: calcareous nannofossil biostratigraphy; D. Pollard: ice-sheet-model data interpretation and integration; J. Reed: core description and visualization; C.R.: diatom biostratigraphy and environmental interpretation; I.R.: palynology and environmental interpretation; D.S.: core and borehole description and structural geology; L.S.: palaeomagnetic stratigraphy and age-model construction; C.S.: diatom biostratigraphy and environmental interpretation; P.S.: foram biostratigraphy and environmental interpretation; M.T.: macrofossil biostratigraphy and environmental interpretation; S.V.: subglacial geological interpretation; T. Wilch: core description and interpretation of volcaniclastic sediments; T. Williams: borehole description and down-hole geophysics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Naish.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S6 with Legends, Supplementary Tables S1-S2, a Supplementary Discussion and Supplementary References (PDF 6603 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Naish, T., Powell, R., Levy, R. et al. Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458, 322–328 (2009). https://doi.org/10.1038/nature07867

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07867

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing