Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sub-cycle switch-on of ultrastrong light–matter interaction


Controlling the way light interacts with material excitations is at the heart of cavity quantum electrodynamics (QED). In the strong-coupling regime, quantum emitters in a microresonator absorb and spontaneously re-emit a photon many times before dissipation becomes effective, giving rise to mixed light–matter eigenmodes1,2,3,4,5,6,7,8,9,10,11,12. Recent experiments13 in semiconductor microcavities reached a new limit of ultrastrong coupling14, where photon exchange occurs on timescales comparable to the oscillation period of light. In this limit, ultrafast modulation of the coupling strength has been suggested to lead to unconventional QED phenomena14,15. Although sophisticated light–matter coupling has been achieved in all three spatial dimensions, control in the fourth dimension, time, is little developed. Here we use a quantum-well waveguide structure to optically tune light–matter interaction from weak to ultrastrong and turn on maximum coupling within less than one cycle of light. In this regime, a class of extremely non-adiabatic phenomena becomes observable. In particular, we directly monitor how a coherent photon population converts to cavity polaritons during abrupt switching. This system forms a promising laboratory in which to study novel sub-cycle QED effects and represents an efficient room-temperature switching device operating at unprecedented speed.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Femtosecond control of ultrastrong light–matter coupling.
Figure 2: Ultrawide optical tuning of light–matter interaction.
Figure 3: Non-adiabatic switch-on dynamics of ultrastrongly coupled cavity polaritons.
Figure 4: Perturbed cavity decay.


  1. Raimond, J. M., Brune, M. & Haroche, S. Colloquium: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)

    ADS  MathSciNet  Article  Google Scholar 

  2. Brennecke, F. et al. Cavity QED with a Bose–Einstein condensate. Nature 450, 268–271 (2007)

    CAS  ADS  Article  Google Scholar 

  3. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992)

    CAS  ADS  Article  Google Scholar 

  4. Dini, D., Köhler, R., Tredicucci, A., Biasiol, G. & Sorba, L. Microcavity polariton splitting of intersubband transitions. Phys. Rev. Lett. 90, 116401 (2003)

    ADS  Article  Google Scholar 

  5. Reithmaier, J. P. et al. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197–200 (2004)

    CAS  ADS  Article  Google Scholar 

  6. Chiorescu, I. et al. Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 431, 159–162 (2004)

    CAS  ADS  Article  Google Scholar 

  7. Anappara, A. A., Tredicucci, A., Beltram, F., Biasiol, G. & Sorba, L. Tunnel-assisted manipulation of intersubband polaritons in asymmetric coupled quantum wells. Appl. Phys. Lett. 89, 171109 (2006)

    ADS  Article  Google Scholar 

  8. Dupont, E., Gupta, J. A. & Liu, H. C. Giant vacuum-field Rabi splitting of intersubband transitions in multiple quantum wells. Phys. Rev. B 75, 205325 (2007)

    ADS  Article  Google Scholar 

  9. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007)

    CAS  ADS  Article  Google Scholar 

  10. Schuster, D. I. et al. Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007)

    CAS  ADS  Article  Google Scholar 

  11. Sapienza, L. et al. Electrically injected cavity polaritons. Phys. Rev. Lett. 100, 136806 (2008)

    CAS  ADS  Article  Google Scholar 

  12. Tsintzos, S. I., Pelekanos, N. T., Konstantinidis, G., Hatzopoulos, Z. & Savvidis, P. G. A. GaAs polariton light-emitting diode operating near room temperature. Nature 453, 372–375 (2008)

    CAS  ADS  Article  Google Scholar 

  13. Anappara, A. A. et al. Light-matter excitations in the ultra-strong coupling regime. Preprint at 〈〉 (2008)

  14. Ciuti, C., Bastard, G. & Carusotto, I. Quantum vacuum properties of the intersubband cavity polariton field. Phys. Rev. B 72, 115303 (2005)

    ADS  Article  Google Scholar 

  15. De Liberato, S., Ciuti, C. & Carusotto, I. Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum Rabi frequency. Phys. Rev. Lett. 98, 103602 (2007)

    ADS  Article  Google Scholar 

  16. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  17. Imamoglu, A., Ram, R. J., Pau, S. & Yamamoto, Y. Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers. Phys. Rev. A 53, 4250–4253 (1996)

    CAS  ADS  Article  Google Scholar 

  18. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006)

    CAS  ADS  Article  Google Scholar 

  19. Helm, M. in Intersubband Transitions in Quantum Wells: Physics and Device Applications I (eds Liu, H. C. & Capasso, F.) 1–99 (Academic, 2000)

    Google Scholar 

  20. Yablonovitch, E. Accelerating reference frame for electromagnetic waves in a rapidly growing plasma: Unruh-Davies-Fulling-DeWitt radiation and the nonadiabatic Casimir effect. Phys. Rev. Lett. 62, 1742–1745 (1989)

    CAS  ADS  Article  Google Scholar 

  21. Kübler, C., Huber, R., Tübel, S. & Leitenstorfer, A. Ultrabroadband detection of multi-THz field transients with GaSe electro-optic sensors: approaching the near infrared. Appl. Phys. Lett. 85, 3360–3362 (2004)

    ADS  Article  Google Scholar 

  22. Ferguson, B. & Zhang, X.-C. Materials for terahertz science and technology. Nature Mater. 1, 26–33 (2002)

    CAS  ADS  Article  Google Scholar 

  23. Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007)

    CAS  ADS  Article  Google Scholar 

  24. Huber, R. et al. How many-particle interactions develop after ultrafast excitation of an electron–hole plasma. Nature 414, 286–289 (2001)

    CAS  ADS  Article  Google Scholar 

  25. Kröll, J. et al. Phase-resolved measurements of stimulated emission in a laser. Nature 449, 698–701 (2007)

    ADS  Article  Google Scholar 

  26. Gaal, P. et al. Internal motions of a quasiparticle governing its ultrafast nonlinear response. Nature 450, 1210–1213 (2007)

    CAS  ADS  Article  Google Scholar 

  27. Unruh, W. G. Second quantisation in the Kerr metric. Phys. Rev. 10, 3194–3205 (1974)

    CAS  ADS  Google Scholar 

  28. Hawking, S. W. Black hole explosions? Nature 248, 30–31 (1974)

    ADS  Article  Google Scholar 

  29. Sell, A. et al. Field-resolved detection of phase-locked infrared transients from a compact Er:fiber system tunable between 55 and 107 THz. Appl. Phys. Lett. 93, 251107 (2008)

    ADS  Article  Google Scholar 

Download references


The authors wish to thank C. Kübler, S. Leinß, and D. Seletskiy for assistance at an early stage of this experiment, and I. Carusotto for discussions. Support by the Deutsche Forschungsgemeinschaft through the Emmy Noether Program and SFB767 is gratefully acknowledged.

Author information

Authors and Affiliations


Corresponding author

Correspondence to R. Huber.

Supplementary information

Supplementary Information

This file contains Supplementary Figure S1 with Legend and Supplementary Notes (PDF 220 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Günter, G., Anappara, A., Hees, J. et al. Sub-cycle switch-on of ultrastrong light–matter interaction. Nature 458, 178–181 (2009).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing