Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of a pressure-induced metal-to-semiconductor transition in lithium

Abstract

Lithium, the lightest metal, has long been considered to have a ‘simple’ electronic structure that can be well explained within the nearly-free-electron model. But lithium does not stay ‘simple’ under compression: rather than becoming more free-electron-like as pressure is increased, first-principles calculations1,2 suggest that it transforms into a semi-metal or semiconductor. Experimentally, it has been shown that dense lithium adopts low-symmetry structures3,4; there is also evidence that its resistivity increases with pressure5,6,7,8. However, the electronic transport properties of lithium have so far not been directly monitored as a function of increasing static pressure. Here we report electrical resistance measurements on lithium in a diamond anvil cell up to pressures of 105 GPa, which reveal a significant increase in electrical resistivity and a change in its temperature dependence near 80 GPa. Our data thus provide unambiguous experimental evidence for a pressure-induced metal-to-semiconductor transition in a ‘simple’ metallic element.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Electrical resistivity changes with pressure and temperature.
Figure 3: Visual observation of pressure-induced changes in metallic reflection.

Similar content being viewed by others

References

  1. Neaton, J. B. & Ashcroft, N. W. Pairing in dense lithium. Nature 400, 141–144 (1999)

    Article  ADS  CAS  Google Scholar 

  2. Christensen, N. E. & Novikov, D. L. High-pressure phases of the alkali metals. Solid State Commun. 119, 477–490 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Hanfland, M., Syassen, K., Christensen, N. E. & Novikov, D. L. New high-pressure phase of lithium. Nature 408, 174–178 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Matsuoka, T. et al. Superconductivity and crystal structure of lithium under high pressure. J. Phys. Conf. Ser. 121, 052003 (2008)

    Article  Google Scholar 

  5. Stager, R. A. & Drickamer, H. G. Effect of temperature and pressure on the resistance of four alkali metals. Phys. Rev. 132, 124–127 (1963)

    Article  ADS  CAS  Google Scholar 

  6. Lin, T. H. & Dunn, K. J. High-pressure and low-temperature study of electrical resistance of lithium. Phys. Rev. B 33, 807–811 (1986)

    Article  ADS  CAS  Google Scholar 

  7. Fortov, V. E. et al. Anomalous electric conductivity of lithium under quasiisentropic compression to 60 GPa (0.6 Mbar). Transition into a molecular phase? JETP Lett. 70, 628–632 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Bastea, M. & Bastea, S. Electrical conductivity of lithium at megabar pressures. Phys. Rev. B 65, 193104 (2002)

    Article  ADS  Google Scholar 

  9. Mori, Y., Zha, C. & Ruoff, A. L. in Science and Technology of High Pressure (eds Manghani, M. H., Nellis, W. J. & Nicol, M. F.) 421–424 (Univ. Press India, 2000)

    Google Scholar 

  10. Goncharov, A. F., Struzhkin, V. V., Mao, H. K. & Hemley, R. J. Spectroscopic evidence for broken-symmetry transitions in dense lithium up to megabar pressures. Phys. Rev. B 74, 184114 (2005)

    Article  ADS  Google Scholar 

  11. Rousseau, R., Uehara, K., Klug, D. D. & Tse, J. S. Symmetry transition of elemental lithium up to 140 GPa. ChemPhysChem 6, 1703–1706 (2005)

    Article  CAS  Google Scholar 

  12. Ma, Y., Oganov, A. R. & Xie, Y. High-pressure structures of lithium, potassium, and rubidium predicted by an ab initio evolutionary algorithm. Phys. Rev. B 78, 014102 (2008)

    Article  ADS  Google Scholar 

  13. Shimizu, K., Ishikawa, H., Takao, D., Yagi, T. & Amaya, K. Superconductivity in compressed lithium at 20 K. Nature 419, 597–599 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Cottrell, A. H. An Introduction to Metallurgy 2nd ed. (Maney Publishing, London, 1997)

    Google Scholar 

  15. Overhauser, A. W. Crystal structure of lithium at 4.2 K. Phys. Rev. Lett. 53, 64–65 (1984)

    Article  ADS  CAS  Google Scholar 

  16. Vaks, V. G. et al. An experimental and theoretical study of martensitic phase transitions in Li and Na under pressure. J. Phys. Condens. Matter 1, 5319–5335 (1989)

    Article  ADS  CAS  Google Scholar 

  17. Smith, H. G., Berliner, R., Jorgensen, J. D., Nielsen, M. & Trivisonno, J. Pressure effects on the martensitic transformation in metallic lithium. Phys. Rev. B 41, 1231–1234 (1990)

    Article  ADS  CAS  Google Scholar 

  18. Hanfland, M., Loa, I., Syassen, K., Schwarz, U. & Takemura, K. Equation of state of lithium to 21 GPa. Solid State Commun. 112, 123–127 (1999)

    Article  ADS  CAS  Google Scholar 

  19. Struzhkin, V. V., Eremets, M. I., Gan, W., Mao, H. K. & Hemley, R. J. Superconductivity in dense lithium. Science 298, 1213–1215 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Deemyad, S. & Schilling, J. S. Superconducting phase diagram of Li metal in nearly hydrostatic pressures up to 67 GPa. Phys. Rev. Lett. 91, 167001 (2003)

    Article  ADS  Google Scholar 

  21. Akahama, Y. & Kawamura, H. High-pressure Raman spectroscopy of diamond anvils to 250 GPa: Method for pressure determination in the multimegabar pressure range. J. Appl. Phys. 96, 3748–3751 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Mao, H. K., Xu, J. & Bell, P. M. Calibration of the ruby pressure gauge to 800 kbar under hydrostatic conditions. J. Geophys. Res. 91, 4673–4676 (1986)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. W. Ashcroft and J. S. Schilling for discussions. This work was supported in part by a Grant-in-Aid for Scientific Research (S), 19104009 and Global COE Program (Core Research and Engineering of Advanced Materials-Interdisciplinary Education Center for Materials Science), MEXT, Japan, and a Grant-in-Aid for JSPS Fellows (19·52753). We acknowledge J. Tse, Y. Yao and D. Klug for discussions and suggestions.

Author Contributions T. M. and K. S. performed the experiments and analysed the data. Both authors wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Matsuoka.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion and Supplementary Figures S1 with Legend (PDF 566 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuoka, T., Shimizu, K. Direct observation of a pressure-induced metal-to-semiconductor transition in lithium. Nature 458, 186–189 (2009). https://doi.org/10.1038/nature07827

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07827

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing