Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Temperature-induced A–B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite

Abstract

Changes of valence states in transition-metal oxides often cause significant changes in their structural and physical properties1,2. Chemical doping is the conventional way of modulating these valence states. In ABO3 perovskite and/or perovskite-like oxides, chemical doping at the A site can introduce holes or electrons at the B site, giving rise to exotic physical properties like high-transition-temperature superconductivity and colossal magnetoresistance3,4. When valence-variable transition metals at two different atomic sites are involved simultaneously, we expect to be able to induce charge transfer—and, hence, valence changes—by using a small external stimulus rather than by introducing a doping element. Materials showing this type of charge transfer are very rare, however, and such externally induced valence changes have been observed only under extreme conditions like high pressure5,6. Here we report unusual temperature-induced valence changes at the A and B sites in the A-site-ordered double perovskite LaCu3Fe4O12; the underlying intersite charge transfer is accompanied by considerable changes in the material’s structural, magnetic and transport properties. When cooled, the compound shows a first-order, reversible transition at 393 K from LaCu2+3Fe3.75+4O12 with Fe3.75+ ions at the B site to LaCu3+3Fe3+4O12 with rare Cu3+ ions at the A site. Intersite charge transfer between the A-site Cu and B-site Fe ions leads to paramagnetism-to-antiferromagnetism and metal-to-insulator isostructural phase transitions. What is more interesting in relation to technological applications is that this above-room-temperature transition is associated with a large negative thermal expansion.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Crystal structure of the A-site-ordered A′A 3 B 4 O 12 double perovskite.
Figure 2: Temperature dependence of Mössbauer data.
Figure 3: Anomalous changes in structural data.
Figure 4: Temperature dependence of isomer shift and hyperfine field, susceptibility ( χ ) and normalized resistivity.

References

  1. 1

    Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Goto, T. & Luthi, B. Charge ordering, charge fluctuations and lattice effects in strongly correlated electron systems. Adv. Phys. 52, 67–118 (2003)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Lee, P. A., Nagaosa, N. & Wen, X. G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Salamon, M. B. & Jaime, M. The physics of manganites: structure and transport. Rev. Mod. Phys. 73, 583–628 (2001)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Seda, T. & Hearne, G. R. Pressure induced Fe2++Ti4+→Fe3++Ti3+ intervalence charge transfer and the Fe3+/Fe2+ ratio in natural ilmenite (FeTiO3) minerals. J. Phys. Condens. Matter 16, 2707–2718 (2004)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Azuma, M. et al. Pressure-induced intermetallic valence transition in BiNiO3 . J. Am. Chem. Soc. 129, 14433–14436 (2007)

    CAS  Article  Google Scholar 

  7. 7

    Zeng, Z., Greenblatt, M., Subramanian, M. A. & Croft, M. Large low-field magnetoresistance in perovskite-type CaCu3Mn4O12 without double exchange. Phys. Rev. Lett. 82, 3164–3167 (1999)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Subramanian, M. A., Li, D., Duan, N., Reisner, B. A. & Sleight, A. W. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151, 323–325 (2000)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S. & Ramirez, A. P. Optical response of high-dielectric-constant perovskite-related oxide. Science 293, 673–676 (2001)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Takata, K. et al. Magnetoresistance and electronic structure of the half-metallic ferrimagnet BiCu3Mn4O12 . Phys. Rev. B 76, 024429 (2007)

    ADS  Article  Google Scholar 

  11. 11

    Sánchez-Benítez, J. et al. Preparation, crystal and magnetic structure, and magnetotransport properties of the double perovskite CaCu2. 5Mn4. 5O12 . Chem. Mater. 15, 2193–2200 (2003)

    Article  Google Scholar 

  12. 12

    Shimakawa, Y. A-site-ordered perovskites with intriguing physical properties. Inorg. Chem. 47, 8562–8570 (2008)

    CAS  Article  Google Scholar 

  13. 13

    Alonso, J. A. et al. Enhanced magnetoresistance in the complex perovskite LaCu3Mn4O12 . Appl. Phys. Lett. 83, 2623–2625 (2003)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Brown, I. D. & Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallogr. B 41, 244–247 (1985)

    Article  Google Scholar 

  15. 15

    Li, X. et al. Mössbauer spectroscopic study on nanocrystalline LaFeO3 materials. Hyperfine Interact. 69, 851–854 (1991)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Blaauw, C. & van der Woude, F. Magnetic and structural properties of BiFeO3 . J. Phys. Chem. 6, 1422–1431 (1973)

    CAS  Google Scholar 

  17. 17

    Kawasaki, S., Takano, M. & Takeda, Y. Ferromagnetic properties of SrFe1-x Co x O3 synthesized under high pressure. J. Solid State Chem. 121, 174–180 (1996)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Takano, M. et al. Charge disproportionation in CaFeO3 studied with the Mössbauer effect. Mater. Res. Bull. 12, 923–928 (1977)

    CAS  Article  Google Scholar 

  19. 19

    Yamada, I. et al. A perovskite containing quadrivalent iron as a charge-disproportionated ferrimagnet. Angew. Chem. Int. Ed. 47, 7032–7035 (2008)

    CAS  Article  Google Scholar 

  20. 20

    Takano, M., Kawachi, J., Nakanishi, N. & Takeda, Y. Valence state of the Fe ions in Sr1-x La x FeO3 . J. Solid State Chem. 39, 75–84 (1981)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Bocquet, A. E. et al. Electronic structure of SrFe4+O3 and related Fe perovskite oxides. Phys. Rev. B 45, 1561–1570 (1992)

    CAS  Article  Google Scholar 

  22. 22

    Riesemeier, H., Gärtner, S., Lüders, K., Schmalz, M. & Schöllhorn, R. Susceptibility and NQR investigations on NaCuO2 . J. Phys. Chem. Solids 55, 613–615 (1994)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Imai, K. et al. Preparation, crystal structure, and magnetic property of a new compound LiCuO2 . J. Phys. Soc. Jpn 61, 1819–1820 (1992)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Prodi, A. et al. Charge, orbital and spin ordering phenomena in the mixed valence manganite (NaMn3+ 3)(Mn3+ 2Mn4+ 2)O12 . Nature Mater. 3, 48–52 (2004)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Takenaka, K. & Takagi, H. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides. Appl. Phys. Lett. 87, 261902 (2005)

    ADS  Article  Google Scholar 

  26. 26

    Takenaka, K., Asano, K., Misawa, M. & Takagi, H. Negative thermal expansion in Ge-free antiperovskite manganese nitrides: Tin-doping effect. Appl. Phys. Lett. 92, 011927 (2008)

    ADS  Article  Google Scholar 

  27. 27

    Sleight, A. W. Isotropic negative thermal expansion. Annu. Rev. Mater. Sci. 28, 29–43 (1998)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Larson, A. C. & von Dreele, R. B. General Structure Analysis System (GSAS). Report No. LAUR 86-748 (Los Alamos National Laboratory, 1994)

    Google Scholar 

Download references

Acknowledgements

We thank K. Nishimura and K. Oka for help with the high-pressure synthesis and magnetic measurements, and we thank K. Jungeun for help with the SXRD experiments. Thanks are also due to M. Takano for discussions. This work was partly supported by Grants-in-Aid for Scientific Research (19GS0207, 18350097, 17038014, 19014010 and 19340098), by the Global COE Program ‘International Center for Integrated Research and Advanced Education in Materials Science’ and by a grant for the Joint Project of Chemical Synthesis Core Research Institutions from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author Contributions Y.W.L. and Y.S. designed the study; Y.W.L. synthesized the sample and performed X-ray diffraction, thermogravimetric, magnetic and electrical measurements with the help of M.A. and T.S.; N.H. carried out Mössbauer measurements with the help of S.M.; all of the authors discussed the results; and Y.W.L. and Y.S. wrote the manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Y. W. Long or Y. Shimakawa.

Supplementary information

Supplementary Information

This file contains Supplementary Tables S1- S2, Supplementary References and Supplementary Figures S1-S2 with Legends (PDF 222 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Long, Y., Hayashi, N., Saito, T. et al. Temperature-induced A–B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite. Nature 458, 60–63 (2009). https://doi.org/10.1038/nature07816

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing