Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interhemispheric Atlantic seesaw response during the last deglaciation


The asynchronous relationship between millennial-scale temperature changes over Greenland and Antarctica during the last glacial period has led to the notion of a bipolar seesaw which acts to redistribute heat depending on the state of meridional overturning circulation within the Atlantic Ocean. Here we present new records from the South Atlantic that show rapid changes during the last deglaciation that were instantaneous (within dating uncertainty) and of opposite sign to those observed in the North Atlantic. Our results demonstrate a direct link between the abrupt changes associated with variations in the Atlantic meridional overturning circulation and the more gradual adjustments characteristic of the Southern Ocean. These results emphasize the importance of the Southern Ocean for the development and transmission of millennial-scale climate variability and highlight its role in deglacial climate change and the associated rise in atmospheric carbon dioxide.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Map showing sea surface temperature (SST)50 and the positions of records shown in Fig. 2 .
Figure 2: Deglacial records from TNO57-21 plus other proxy records for temperature and circulation within the Atlantic Ocean.
Figure 3: Records of surface temperature and benthic fauna from TNO57-21.


  1. 1

    Stuiver, M. & Grootes, P. M. GISP2 oxygen isotope ratios. Quat. Res. 53, 277–283 (2000)

    CAS  Article  Google Scholar 

  2. 2

    Bard, E., Rostek, F., Turon, J. L. & Gendreau, S. Hydrological impact of Heinrich events in the subtropical northeast Atlantic. Science 289, 1321–1324 (2000)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Shackleton, N. J., Hall, M. A. & Vincent, E. Phase relationships between millennial-scale events 64,000-24,000 years ago. Paleoceanography 15, 565–569 (2000)

    ADS  Article  Google Scholar 

  4. 4

    Blunier, T. & Brook, E. J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109–112 (2001)

    ADS  CAS  Article  Google Scholar 

  5. 5

    EPICA Community Members. One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444, 195–198 (2006)

  6. 6

    Crowley, T. J. North Atlantic deep water cools the Southern Hemisphere. Paleoceanography 7, 489–497 (1992)

    ADS  Article  Google Scholar 

  7. 7

    Broecker, W. S. Paleocean circulation during the last deglaciation: A bipolar seesaw? Paleoceanography 13, 119–121 (1998)

    ADS  Article  Google Scholar 

  8. 8

    Vellinga, M. & Wood, R. A. Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim. Change 54, 251–267 (2002)

    Article  Google Scholar 

  9. 9

    Schmittner, A., Saenko, O. A. & Weaver, A. J. Coupling of the hemispheres in observations and simulations of glacial climate change. Quat. Sci. Rev. 22, 659–671 (2003)

    ADS  Article  Google Scholar 

  10. 10

    Rind, D. et al. Effects of glacial meltwater in the GISS coupled atmosphere-ocean model - 2. A bipolar seesaw in Atlantic Deep Water production. J. Geophys. Res. 106, 27355–27365 (2001)

    ADS  Article  Google Scholar 

  11. 11

    Stocker, T. F. & Johnsen, S. J. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18 10.1029/2003PA000920 (2003)

  12. 12

    Wang, X. F. et al. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432, 740–743 (2004)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Lamy, F. et al. Modulation of the bipolar seesaw in the southeast pacific during Termination 1. Earth Planet. Sci. Lett. 259, 400–413 (2007)

    ADS  CAS  Article  Google Scholar 

  14. 14

    McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Denton, G. H., Broecker, W. S. & Alley, R. B. The mystery interval 17.5 to 14.5 kyrs ago. PAGES News 14, 14–16 (2006)

    Article  Google Scholar 

  16. 16

    Barker, S. & Knorr, G. Antarctic climate signature in the Greenland ice core record. Proc. Natl Acad. Sci. USA 104, 17278–17282 (2007)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Ninnemann, U. S. & Charles, C. D. Regional differences in quaternary Subantarctic nutrient cycling: Link to intermediate and deep water ventilation. Paleoceanography 12, 560–567 (1997)

    ADS  Article  Google Scholar 

  18. 18

    Kanfoush, S. L. et al. Millennial-scale instability of the Antarctic ice sheet during the last glaciation. Science 288, 1815–1818 (2000)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Johnsen, S. J., Dansgaard, W., Clausen, H. B. & Langway, C. C. Oxygen isotope profiles through Antarctic and Greenland ice sheets. Nature 235, 429–434 (1972)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Niebler, H. S. & Gersonde, R. A planktic foraminiferal transfer function for the southern South Atlantic Ocean. Mar. Micropaleontol. 34, 213–234 (1998)

    ADS  Article  Google Scholar 

  21. 21

    Peeters, F. J. C. et al. Vigorous exchange between the Indian and Atlantic oceans at the end of the past five glacial periods. Nature 430, 661–665 (2004)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Arz, H. W., Patzold, J. & Wefer, G. The deglacial history of the western tropical Atlantic as inferred from high resolution stable isotope records off northeastern Brazil. Earth Planet. Sci. Lett. 167, 105–117 (1999)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Kim, J. H., Schneider, R. R., Muller, P. J. & Wefer, G. Interhemispheric comparison of deglacial sea-surface temperature patterns in Atlantic eastern boundary currents. Earth Planet. Sci. Lett. 194, 383–393 (2002)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Farmer, E. C., deMenocal, P. B. & Marchitto, T. M. Holocene and deglacial ocean temperature variability in the Benguela upwelling region: Implications for low-latitude atmospheric circulation. Paleoceanography 20 10.1029/2004PA001049 (2005)

  25. 25

    Barker, S., Cacho, I., Benway, H. & Tachikawa, K. Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures: a methodological overview and data compilation for the Last Glacial Maximum. Quat. Sci. Rev. 24, 821–834 (2005)

    ADS  Article  Google Scholar 

  26. 26

    Mashiotta, T. A., Lea, D. W. & Spero, H. J. Glacial-interglacial changes in Subantarctic sea surface temperature and δ18O-water using foraminiferal Mg. Earth Planet. Sci. Lett. 170, 417–432 (1999)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Berger, W. H. Planktonic foraminifera: selective solution and the lysocline. Mar. Geol. 8, 111–138 (1970)

    ADS  Article  Google Scholar 

  28. 28

    Gooday, A. J. A response by benthic Foraminifera to the deposition of phytodetritus in the deep sea. Nature 332, 70–73 (1988)

    ADS  Article  Google Scholar 

  29. 29

    Cornelius, N. & Gooday, A. J. 'Live' (stained) deep-sea benthic foraminiferans in the western Weddell Sea: trends in abundance, diversity and taxonomic composition along a depth transect. Deep-Sea Res. II 51, 1571–1602 (2004)

    ADS  Article  Google Scholar 

  30. 30

    Froneman, P. W., Laubscher, R. K. & McQuaid, C. D. Size-fractionated primary production in the south Atlantic and Atlantic sectors of the Southern Ocean. J. Plankton Res. 23, 611–622 (2001)

    CAS  Article  Google Scholar 

  31. 31

    Saraceno, M., Provost, C. & Piola, A. R. On the relationship between satellite-retrieved surface temperature fronts and chlorophyll a in the western South Atlantic. J. Geophys. Res. 110 10.1029/2004JC002736 (2005)

  32. 32

    Llido, J., Garcon, V., Lutjeharms, J. R. E. & Sudre, J. Event-scale blooms drive enhanced primary productivity at the Subtropical Convergence. Geophys. Res. Lett. 32 10.1029/2005GL022880 (2005)

  33. 33

    Machu, E. et al. Phytoplankton distribution in the Agulhas system from a coupled physical-biological model. Deep-Sea Res. I 52, 1300–1318 (2005)

    ADS  Article  Google Scholar 

  34. 34

    Bathmann, U. V., Scharek, R., Klaas, C., Dubischar, C. D. & Smetacek, V. Spring development of phytoplankton biomass and composition in major water masses of the Atlantic sector of the Southern Ocean. Deep-Sea Res. II 44, 51–67 (1997)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Sachs, J. P. & Anderson, R. F. Increased productivity in the subantarctic ocean during Heinrich events. Nature 434, 1118–1121 (2005)

    ADS  CAS  Article  Google Scholar 

  36. 36

    Timmermann, A., Krebs, U., Justino, F., Goosse, H. & Ivanochko, T. Mechanisms for millennial-scale global synchronization during the last glacial period. Paleoceanography 20 10.1029/2004PA001090 (2005)

  37. 37

    Knorr, G. & Lohmann, G. Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Nature 424, 532–536 (2003)

    ADS  CAS  Article  Google Scholar 

  38. 38

    Knorr, G. & Lohmann, G. Rapid transitions in the Atlantic thermohaline circulation triggered by global warming and meltwater during the last deglaciation. Geochem. Geophys. Geosyst. 8 10.1029/2007GC001604 (2007)

  39. 39

    Cox, M. D. An idealized model of the world ocean. 1. The global-scale water masses. J. Phys. Oceanogr. 19, 1730–1752 (1989)

    ADS  Article  Google Scholar 

  40. 40

    Li, C., Battisti, D. S., Schrag, D. P. & Tziperman, E. Abrupt climate shifts in Greenland due to displacements of the sea ice edge. Geophys. Res. Lett. 32 10.1029/2005GL023492 (2005)

  41. 41

    Monnin, E. et al. Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112–114 (2001)

    ADS  CAS  Article  Google Scholar 

  42. 42

    Ahn, J. & Brook, E. J. Atmospheric CO2 and climate from 65 to 30 ka B.P. Geophys. Res. Lett. 34 10.1029/2007GL029551 (2007)

  43. 43

    Toggweiler, J. R., Russell, J. L. & Carson, S. R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21 10.1029/2005PA001154 (2006)

  44. 44

    Kohler, P., Fischer, H., Munhoven, G. & Zeebe, R. E. Quantitative interpretation of atmospheric carbon records over the last glacial termination. Glob. Biogeochem. Cycles 19 10.1029/2004GB002345 (2005)

  45. 45

    Spero, H. J. & Lea, D. W. The cause of carbon isotope minimum events on glacial terminations. Science 296, 522–525 (2002)

    ADS  CAS  Article  Google Scholar 

  46. 46

    Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth’s orbit: Pacemaker of the ice ages. Science 194, 1121–1132 (1976)

    ADS  CAS  Article  Google Scholar 

  47. 47

    Raymo, M. E. The timing of major climate terminations. Paleoceanography 12, 577–585 (1997)

    ADS  Article  Google Scholar 

  48. 48

    Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 4 10.1029/2003GC000559 (2003)

  49. 49

    Charles, C. D., Lynch-Stieglitz, J., Ninnemann, U. S. & Fairbanks, R. G. Climate connections between the hemispheres revealed by deep sea sediment core/ice core correlations. Earth Planet. Sci. Lett. 142, 19–27 (1996)

    ADS  CAS  Article  Google Scholar 

  50. 50

    Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P. & Garcia, H. E. World Ocean Atlas 2005, Volume 1: Temperature (ed. Levitus, S.) (NOAA Atlas NESDIS 61, US Govt Printing Office, 2006)

    Google Scholar 

  51. 51

    Stuiver, M. & Reimer, P. J. Extended 14C data-base and revised Calib 3.0 14C age calibration program. Radiocarbon 35, 215–230 (1993)

    Article  Google Scholar 

  52. 52

    Hughen, K. A. et al. Marine04 marine radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46, 1059–1086 (2004)

    CAS  Article  Google Scholar 

  53. 53

    Fairbanks, R. G. et al. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired Th-230/U-234/U-238 and C-14 dates on pristine corals. Quat. Sci. Rev. 24, 1781–1796 (2005)

    ADS  Article  Google Scholar 

  54. 54

    Bard, E. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications. Paleoceanography 3, 635–645 (1988)

    ADS  Article  Google Scholar 

  55. 55

    Kennett, J. P. & Srinivasan, M. S. Neogene Planktonic Foraminifera: A Phylogenetic Atlas (Wiley, 1983)

    Google Scholar 

  56. 56

    Andersen, K. K. et al. A 60 000 year Greenland stratigraphic ice core chronology. Clim. Past Discuss. 3, 1235–1260 (2007)

    ADS  Article  Google Scholar 

  57. 57

    Parrenin, F. et al. The EDC3 chronology for the EPICA dome C ice core. Clim. Past 3, 485–497 (2007)

    Article  Google Scholar 

Download references


We thank J. Riker and C. Lear for analytical advice and assistance and H. Medley for help with sediment processing. Sample material used in this project was provided by the Lamont-Doherty Earth Observatory Deep-Sea Sample Repository. We thank R. Lotti and G. Lozefski for help with sampling. Support for the collection and curating facilities of the core collection is provided by the US National Science Foundation through grant OCE00-02380 and the Office of Naval Research through grant N00014-02-1-0073. The work was supported by a National Science Foundation grant (OCE-0435703) to W.S.B. and S.B.

Author Contributions S.B. designed the research and performed foraminiferal Mg/Ca analyses, P.D. performed benthic foraminiferal counts and picked planktonic foraminifera for 14C dating and Mg/Ca analyses, M.J.V. performed planktonic foraminiferal counts, J.P. performed diatom counts and G.K. helped with interpretation. All authors contributed towards preparing the manuscript.

Author information



Corresponding author

Correspondence to Stephen Barker.

Supplementary information

Supplementary Information

This file contains Supplementary Data, Supplementary References, Supplementary Table S1 and Supplementary Figures S1-S9 with Legends (PDF 798 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barker, S., Diz, P., Vautravers, M. et al. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457, 1097–1102 (2009).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing