Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neisseria meningitidis recruits factor H using protein mimicry of host carbohydrates


The complement system is an essential component of the innate and acquired immune system1, and consists of a series of proteolytic cascades that are initiated by the presence of microorganisms. In health, activation of complement is precisely controlled through membrane-bound and soluble plasma-regulatory proteins including complement factor H (fH; ref. 2), a 155 kDa protein composed of 20 domains (termed complement control protein repeats). Many pathogens have evolved the ability to avoid immune-killing by recruiting host complement regulators3 and several pathogens have adapted to avoid complement-mediated killing by sequestering fH to their surface4. Here we present the structure of a complement regulator in complex with its pathogen surface-protein ligand. This reveals how the important human pathogen Neisseria meningitidis subverts immune responses by mimicking the host, using protein instead of charged-carbohydrate chemistry to recruit the host complement regulator, fH. The structure also indicates the molecular basis of the host-specificity of the interaction between fH and the meningococcus, and informs attempts to develop novel therapeutics and vaccines.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The fHbp binding site requires both CCP6 of fH and requires the complete extracellular portion of fHbp.
Figure 2: Structure of fHbp and its complex with fH67.
Figure 3: Interference with fHbp binding of fH.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates and X-ray data have been deposited in the Protein Data Bank under accession numbers 2w80 and 2w81.


  1. Lachmann, P. J. Biological functions of the complement system. Biochem. Soc. Trans. 18, 1143–1145 (1990)

    CAS  Article  Google Scholar 

  2. Zipfel, P. F., Jokiranta, T. S., Hellwage, J., Koistinen, V. & Meri, S. The factor H protein family. Immunopharmacology 42, 53–60 (1999)

    CAS  Article  Google Scholar 

  3. Lambris, J. D., Ricklin, D. & Geisbrecht, B. V. Complement evasion by human pathogens. Nature Rev. Microbiol. 6, 132–142 (2008)

    CAS  Article  Google Scholar 

  4. Jozsi, M. & Zipfel, P. F. Factor H family proteins and human diseases. Trends Immunol. 29, 380–387 (2008)

    CAS  Article  Google Scholar 

  5. Stephens, D. S., Greenwood, B. & Brandtzaeg, P. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis . Lancet 369, 2196–2210 (2007)

    Article  Google Scholar 

  6. Feavers, I. M. ABC of meningococcal diversity. Nature 404, 451–452 (2000)

    CAS  Article  Google Scholar 

  7. Gray, S. J. et al. Epidemiology of meningococcal disease in England and Wales 1993/94 to 2003/04: Contribution and experiences of the Meningococcal Reference Unit. J. Med. Microbiol. 55, 887–896 (2006)

    Article  Google Scholar 

  8. Harrison, L. H. Prospects for vaccine prevention of meningococcal infection. Clin. Microbiol. Rev. 19, 142–164 (2006)

    CAS  Article  Google Scholar 

  9. Fletcher, L. D. et al. Vaccine potential of the Neisseria meningitidis 2086 lipoprotein. Infect. Immun. 72, 2088–2100 (2004)

    CAS  Article  Google Scholar 

  10. Masignani, V. et al. Vaccination against Neisseria meningitidis using three variants of the lipoprotein GNA1870. J. Exp. Med. 197, 789–799 (2003)

    CAS  Article  Google Scholar 

  11. Cantini, F. et al. Solution structure of the immunodominant domain of protective antigen GNA1870 of Neisseria meningitidis . J. Biol. Chem. 281, 7220–7227 (2006)

    CAS  Article  Google Scholar 

  12. Giuliani, M. M. et al. The region comprising amino acids 100 to 255 of Neisseria meningitidis lipoprotein GNA 1870 elicits bactericidal antibodies. Infect. Immun. 73, 1151–1160 (2005)

    CAS  Article  Google Scholar 

  13. Madico, G. et al. The meningococcal vaccine candidate GNA1870 binds the complement regulatory protein factor H and enhances serum resistance. J. Immunol. 177, 501–510 (2006)

    CAS  Article  Google Scholar 

  14. Schneider, M. C. et al. Functional significance of factor H binding to Neisseria meningitidis . J. Immunol. 176, 7566–7575 (2006)

    CAS  Article  Google Scholar 

  15. Haralambous, E. et al. Factor H, a regulator of complement activity, is a major determinant of meningococcal disease susceptibility in UK Caucasian patients. Scand. J. Infect. Dis. 38, 764–771 (2006)

    CAS  Article  Google Scholar 

  16. Davies, D. R., Padlan, E. A. & Sheriff, S. Antibody-antigen complexes. Annu. Rev. Biochem. 59, 439–473 (1990)

    CAS  Article  Google Scholar 

  17. Edwards, A. O. et al. Complement factor H polymorphism and age-related macular degeneration. Science 308, 421–424 (2005)

    ADS  CAS  Article  Google Scholar 

  18. Hageman, G. S. et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc. Natl Acad. Sci. USA 102, 7227–7232 (2005)

    ADS  CAS  Article  Google Scholar 

  19. Haines, J. L. et al. Complement factor H variant increases the risk of age-related macular degeneration. Science 308, 419–421 (2005)

    ADS  CAS  Article  Google Scholar 

  20. Beernink, P. T. & Granoff, D. M. Bactericidal antibody responses induced by meningococcal recombinant chimeric factor H-binding protein vaccines. Infect. Immun. 76, 2568–2575 (2008)

    CAS  Article  Google Scholar 

  21. Prosser, B. E. et al. Structural basis for complement factor H linked age-related macular degeneration. J. Exp. Med. 204, 2277–2283 (2007)

    CAS  Article  Google Scholar 

  22. Schmidt, C. Q. et al. A new map of glycosaminoglycan and C3b binding sites on factor H. J. Immunol. 181, 2610–2619 (2008)

    CAS  Article  Google Scholar 

  23. Meri, S. & Pangburn, M. K. Discrimination between activators and nonactivators of the alternative pathway of complement: Regulation via a sialic acid/polyanion binding site on factor H. Proc. Natl Acad. Sci. USA 87, 3982–3986 (1990)

    ADS  CAS  Article  Google Scholar 

  24. Fedtke, I., Gotz, F. & Peschel, A. Bacterial evasion of innate host defenses–the Staphylococcus aureus lesson. Int. J. Med. Microbiol. 294, 189–194 (2004)

    CAS  Article  Google Scholar 

  25. Granoff, D. M., Welsch, J. A. & Ram, S. Binding of complement factor H to Neisseria meningitidis is specific for human fH and inhibits complement activation by rat and rabbit sera. Infect. Immun. 77, 764–769 (2009)

    CAS  Article  Google Scholar 

  26. Gibbs, R. A. et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science 316, 222–234 (2007)

    CAS  Article  Google Scholar 

  27. Heckenberg, S. G. et al. Clinical features, outcome, and meningococcal genotype in 258 adults with meningococcal meningitis: A prospective cohort study. Medicine (Baltimore) 87, 185–192 (2008)

    Article  Google Scholar 

  28. Jokiranta, T. S. et al. Analysis of the recognition mechanism of the alternative pathway of complement by monoclonal anti-factor H antibodies: Evidence for multiple interactions between H and surface bound C3b. FEBS Lett. 393, 297–302 (1996)

    CAS  Article  Google Scholar 

  29. Sim, E., Palmer, M. S., Puklavec, M. & Sim, R. B. Monoclonal antibodies against the complement control protein factor H (beta 1 H). Biosci. Rep. 3, 1119–1131 (1983)

    CAS  Article  Google Scholar 

  30. Prosser, B. E. et al. Expression, purification, cocrystallization and preliminary crystallographic analysis of sucrose octasulfate/human complement regulator factor H SCRs 6-8. Acta Crystallogr. F 63, 480–483 (2007)

    CAS  Article  Google Scholar 

  31. Bahar, M. et al. SPINE workshop on automated X-ray analysis: a progress report. Acta Crystallogr. D 62, 1170–1183 (2006)

    CAS  Article  Google Scholar 

  32. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993)

    CAS  Article  Google Scholar 

  33. Evans, P. R. Data reduction. In Proceedings of CCP4 Study Weekend (eds Sawyer, L., Isaacs, N. & Bailey, S.) 114–122 (SERC, Daresbury Laboratory, 1993)

    Google Scholar 

  34. Prosser, B. E. et al. Structural basis for complement factor H linked age-related macular degeneration. J. Exp. Med. 204, 2277–2283 (2007)

    CAS  Article  Google Scholar 

  35. Vagin, A. A. & Isupov, M. N. Spherically averaged phased translation function and its application to the search for molecules and fragments in electron-density maps. Acta Crystallogr. D 57, 1451–1456 (2001)

    CAS  Article  Google Scholar 

  36. Winn, M. D. An overview of the CCP4 project in protein crystallography: An example of a collaborative project. J. Synchrotron Radiat. 10, 23–25 (2003)

    CAS  Article  Google Scholar 

  37. Blanc, E. et al. Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr. D 60, 2210–2221 (2004)

    CAS  Article  Google Scholar 

  38. De La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for the multiple isomorphous replacement and multiwavelength-anomalous dispersion methods. Methods Enzymol. 276, 472–494 (1997)

    CAS  Article  Google Scholar 

  39. Cowtan, K. & Main, P. Miscellaneous algorithms for density modification. Acta Crystallogr. D 54, 487–493 (1998)

    CAS  Article  Google Scholar 

  40. Emsley, P. & Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  41. Davis, I. W. et al. MolProbity: All-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–383 (2007)

    ADS  Article  Google Scholar 

Download references


Thanks are due to G. Bricogne and the Global Phasing Consortium for access to a β version of autoSHARP and autoBUSTER, to the beamline staff of the European Synchrotron Radiation Source (particularly G. Leonard) and DIAMOND (UK), and to many members of the Laboratory of Molecular Biophysics, Oxford, and the Lea group for help with X-ray data collection. B.E.P. was funded by a Wellcome Trust studentship; P.R. and S.J. by Medical Research Council grants to S.M.L.; J.E.D. by a Wellcome Trust grant to SM.L.; and J.E.L. by an Engineering and Physical Sciences Research Grant to S.M.L. Work in C.M.T.’s laboratory is funded by the Wellcome Trust and the Medical Research Council. E.K. is an EMBO fellow.

Author Contributions B.E.P., J.E.D. and J.J.E.C. performed SPR experiments; B.E.P., J.J.E.C., J.E.L. and S.Q. expressed proteins and crystallized the complex; M.C.S., E.K. and Q.Z. performed all assays with Neisseria and expressed fHbp; S.J., P.R. and S.M.L. collected and analysed X ray data; S.M.L. phased the X-ray data and built/refined the models; and S.M.L. and C.M.T. designed the research and wrote the paper.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Christoph M. Tang or Susan M. Lea.

Supplementary information

Supplementary Information

This file contains Methods and Supplementary Data, Supplementary Tables 1-2, Supplementary Figures 1-11 with Legends and Supplementary References (PDF 2346 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schneider, M., Prosser, B., Caesar, J. et al. Neisseria meningitidis recruits factor H using protein mimicry of host carbohydrates. Nature 458, 890–893 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing