Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetic assembly of colloidal superstructures with multipole symmetry

Abstract

The assembly of complex structures out of simple colloidal building blocks is of practical interest for building materials with unique optical properties (for example photonic crystals1 and DNA biosensors2) and is of fundamental importance in improving our understanding of self-assembly processes occurring on molecular to macroscopic length scales3,4,5. Here we demonstrate a self-assembly principle that is capable of organizing a diverse set of colloidal particles into highly reproducible, rotationally symmetric arrangements. The structures are assembled using the magnetostatic interaction between effectively diamagnetic and paramagnetic particles within a magnetized ferrofluid. The resulting multipolar geometries resemble electrostatic charge configurations such as axial quadrupoles (‘Saturn rings’), axial octupoles (‘flowers’), linear quadrupoles (poles) and mixed multipole arrangements (‘two tone’), which represent just a few examples of the type of structure that can be built using this technique.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Illustration of magnetic assembly in colloidal particle mixtures.
Figure 2: Assembly of ‘Saturn-rings’ particles and their statistical distribution.
Figure 3: Experimental phase diagrams and critical behaviour.
Figure 4: Demonstration of multi-component particle assembly.

References

  1. Xia, Y. N., Gates, B. & Li, Z. Y. Self-assembly approaches to three-dimensional photonic crystals. Adv. Mater. 13, 409–413 (2001)

    CAS  Article  Google Scholar 

  2. Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L. & Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997)

    CAS  Article  Google Scholar 

  3. Zerrouki, D., Baudry, J., Pine, D., Chaikin, P. & Bibette, J. Chiral colloidal clusters. Nature 455, 380–382 (2008)

    ADS  CAS  Article  Google Scholar 

  4. Manoharan, V. N., Elsesser, M. T. & Pine, D. J. Dense packing and symmetry in small clusters of microspheres. Science 301, 483–487 (2003)

    ADS  CAS  Article  Google Scholar 

  5. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002)

    ADS  CAS  Article  Google Scholar 

  6. Dinsmore, A. D. et al. Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298, 1006–1009 (2002)

    ADS  CAS  Article  Google Scholar 

  7. Velev, O. D., Lenhoff, A. M. & Kaler, E. W. A class of microstructured particles through colloidal crystallization. Science 287, 2240–2243 (2000)

    ADS  CAS  Article  Google Scholar 

  8. Kim, S. H., Yi, G. R., Kim, K. H. & Yang, S. M. Photocurable Pickering emulsion for colloidal particles with structural complexity. Langmuir 24, 2365–2371 (2008)

    CAS  Article  Google Scholar 

  9. Dreyfus, R. et al. Microscopic artificial swimmers. Nature 437, 862–865 (2005)

    ADS  CAS  Article  Google Scholar 

  10. Musevic, I., Skarabot, M., Tkalec, U., Ravnik, M. & Zumer, S. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science 313, 954–958 (2006)

    ADS  CAS  Article  Google Scholar 

  11. Biswal, S. L. & Gast, A. P. Rotational dynamics of semiflexible paramagnetic particle chains. Phys. Rev. E 69, 041406 (2004)

    ADS  Article  Google Scholar 

  12. Yellen, B. B., Hovorka, O. & Friedman, G. Arranging matter by magnetic nanoparticle assemblers. Proc. Natl Acad. Sci. USA 102, 8860–8864 (2005)

    ADS  CAS  Article  Google Scholar 

  13. Yin, Y., Lu, Y., Gates, B. & Xia, Y. Template-assisted self-assembly: A practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J. Am. Chem. Soc. 123, 8718–8729 (2001)

    CAS  Article  Google Scholar 

  14. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006)

    ADS  CAS  Article  Google Scholar 

  15. Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–240 (2005)

    ADS  CAS  Article  Google Scholar 

  16. Ozin, G. A. & Yang, S. M. The race for the photonic chip: Colloidal crystal assembly in silicon wafers. Adv. Funct. Mater. 11, 95–104 (2001)

    CAS  Article  Google Scholar 

  17. Zhuang, J., Wu, H., Yang, Y. & Cao, Y. C. Controlling colloidal superparticle growth through solvophobic interactions. Angew. Chem. Int. Ed. 47, 2208–2212 (2008)

    CAS  Article  Google Scholar 

  18. Skjeltorp, A. T. One- and two-dimensional crystallization of magnetic holes. Phys. Rev. Lett. 51, 2306–2309 (1983)

    ADS  CAS  Article  Google Scholar 

  19. Halsey, T. C. Electrorheological fluids. Science 258, 761–766 (1992)

    ADS  CAS  Article  Google Scholar 

  20. Cho, Y. S. et al. Self-organization of bidisperse colloids in water droplets. J. Am. Chem. Soc. 127, 15968–15975 (2005)

    CAS  Article  Google Scholar 

  21. Panofsky, W. K. H. & Phillips, M. Classical Electricity and Magnetism 84–86 (Addison Wesley, 1955)

    MATH  Google Scholar 

  22. Helgesen, G., Pieranski, P. & Skjeltorp, A. T. Dynamic behavior of simple magnetic hole systems. Phys. Rev. A 42, 7271–7280 (1990)

    ADS  CAS  Article  Google Scholar 

  23. Erb, R. M. & Yellen, B. B. Concentration gradients in mixed magnetic and nonmagnetic colloidal suspensions. J. Appl. Phys. 103, 07A312 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the US National Science Foundation (grants NSEC DMI-0531171 and MRSEC DMR-0213695 to V.M.R. and grants CMMI-0608819 and CMMI-0625480 to B.B.Y.) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin B. Yellen.

Supplementary information

Supplementary Information

This file contain Supplementary Materials and Methods, Supplementary Figures 1-3 with Legends and Supplementary Video Legends 1-5. (PDF 503 kb)

Supplementary Movie 1

This file shows the synchronous rotation of Saturn particles in a rotating external field (see files s1 for full legend). (MOV 866 kb)

Supplementary Movie 2

This file shows the formation and dissolution of Saturn particles (see file s1 for full legend). (MOV 4013 kb)

Supplementary Movie 3

This file shows a tri-component aqueous suspension of colloidal particles (see file s1 for full legend). (MOV 453 kb)

Supplementary Movie 4

This file shows the formation of mixed pole/ring structures (see file s1 for full legend). (MOV 1988 kb)

Supplementary Movie 5

This file shows flower shaped colloidal particles (see file s1 for full legend). (MOV 2813 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Erb, R., Son, H., Samanta, B. et al. Magnetic assembly of colloidal superstructures with multipole symmetry. Nature 457, 999–1002 (2009). https://doi.org/10.1038/nature07766

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07766

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing