Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Viral and cellular messenger RNA targets of viral microRNAs

Abstract

Given the propensity of viruses to co-opt cellular pathways and activities for their benefit, it is perhaps not surprising that several viruses have now been shown to reshape the cellular environment by reprogramming the host's RNA-interference machinery. In particular, microRNAs are produced by the various members of the herpesvirus family during both the latent stage of the viral life cycle and the lytic (or productive) stage. Emerging data suggest that viral microRNAs are particularly important for regulating the transition from latent to lytic replication and for attenuating antiviral immune responses.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: How DNA virus miRNAs target host and viral mRNAs.

References

  1. Pfeffer, S. et al. Identification of virus-encoded microRNAs. Science 304, 734–736 (2004).

    ADS  CAS  Article  Google Scholar 

  2. Cai, X. et al. Epstein–Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog. 2, e23 (2006).

    Article  Google Scholar 

  3. Grundhoff, A., Sullivan, C. S. & Ganem, D. A combined computational and microarray-based approach identifies novel microRNAs encoded by human γ-herpesviruses. RNA 12, 733–750 (2006).

    CAS  Article  Google Scholar 

  4. Cai, X. et al. Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl Acad. Sci. USA 102, 5570–5575 (2005). This paper showed that viral miRNAs might be conserved during viral evolution.

    ADS  CAS  Article  Google Scholar 

  5. Pfeffer, S. et al. Identification of microRNAs of the herpesvirus family. Nature Methods 2, 269–276 (2005). This paper documented the generation of miRNAs by several herpesvirus species.

    CAS  Article  Google Scholar 

  6. Grey, F. et al. Identification and characterization of human cytomegalovirus-encoded microRNAs. J. Virol. 79, 12095–12099 (2005).

    CAS  Article  Google Scholar 

  7. Cui, C. et al. Prediction and identification of herpes simplex virus 1-encoded microRNAs. J. Virol. 80, 5499–5508 (2006).

    CAS  Article  Google Scholar 

  8. Umbach, J. L. et al. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454, 780–783 (2008).

    ADS  CAS  Article  Google Scholar 

  9. Schäfer, A., Cai, X., Bilello, J. P., Desrosiers, R. C. & Cullen, B. R. Cloning and analysis of microRNAs encoded by the primate γ-herpesvirus rhesus monkey rhadinovirus. Virology 364, 21–27 (2007).

    Article  Google Scholar 

  10. Buck, A. H. et al. Discrete clusters of virus-encoded microRNAs are associated with complementary strands of the genome and the 7.2-kilobase stable intron in murine cytomegalovirus. J. Virol. 81, 13761–13770 (2007).

    CAS  Article  Google Scholar 

  11. Dölken, L. et al. Mouse cytomegalovirus microRNAs dominate the cellular small RNA profile during lytic infection and show features of posttranscriptional regulation. J. Virol. 81, 13771–13782 (2007).

    Article  Google Scholar 

  12. Yao, Y. et al. Marek's disease virus type 2 (MDV-2)-encoded microRNAs show no sequence conservation with those encoded by MDV-1. J. Virol. 81, 7164–7170 (2007).

    CAS  Article  Google Scholar 

  13. Burnside, J. et al. Marek's disease virus encodes microRNAs that map to meq and the latency-associated transcript. J. Virol. 80, 8778–8786 (2006).

    CAS  Article  Google Scholar 

  14. Sullivan, C. S., Grundhoff, A. T., Tevethia, S., Pipas, J. M. & Ganem, D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435, 682–686 (2005). This paper described the first viral miRNA phenotype in culture.

    ADS  CAS  Article  Google Scholar 

  15. Seo, G. J., Fink, L. H., O'Hara, B., Atwood, W. J. & Sullivan, C. S. Evolutionarily conserved function of a viral microRNA. J. Virol. 82, 9823–9828 (2008).

    CAS  Article  Google Scholar 

  16. Xu, N., Segerman, B., Zhou, X. & Akusjarvi, G. Adenovirus virus-associated RNAII-derived small RNAs are efficiently incorporated into the RNA-induced silencing complex and associate with polyribosomes. J. Virol. 81, 10540–10549 (2007).

    CAS  Article  Google Scholar 

  17. Lin, J. & Cullen, B. R. Analysis of the interaction of primate retroviruses with the human RNA interference machinery. J. Virol. 81, 12218–12226 (2007).

    CAS  Article  Google Scholar 

  18. Ouellet, D. L. et al. Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element. Nucleic Acids Res. 36, 2353–2365 (2008).

    CAS  Article  Google Scholar 

  19. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  Article  Google Scholar 

  20. Murphy, E., Vanicek, J., Robins, H., Shenk, T. & Levine, A. J. Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. Proc. Natl Acad. Sci. USA 105, 5453–5458 (2008).

    ADS  CAS  Article  Google Scholar 

  21. Gottwein, E., Cai, X. & Cullen, B. R. Expression and function of microRNAs encoded by Kaposi's sarcoma-associated herpesvirus. Cold Spring Harb. Symp. Quant. Biol. 71, 357–364 (2006).

    CAS  Article  Google Scholar 

  22. Barth, S. et al. Epstein–Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res. 36, 666–675 (2008).

    CAS  Article  Google Scholar 

  23. Hussain, M., Taft, R. J. & Asgari, S. An insect virus-encoded microRNA regulates viral replication. J. Virol. 82, 9164–9170 (2008).

    CAS  Article  Google Scholar 

  24. Tang, S. et al. An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor. Proc. Natl Acad. Sci. USA 105, 10931–10936 (2008).

    ADS  CAS  Article  Google Scholar 

  25. Wu, L., Fan, J. & Belasco, J. G. Importance of translation and nonnucleolytic Ago proteins for on-target RNA interference. Curr. Biol. 18, 1327–1332 (2008).

    CAS  Article  Google Scholar 

  26. Brodersen, P. et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science 320, 1185–1190 (2008).

    ADS  CAS  Article  Google Scholar 

  27. He, B., Gross, M. & Roizman, B. The γ134.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1α to dephosphorylate the α subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc. Natl Acad. Sci. USA 94, 843–848 (1997).

    ADS  CAS  Article  Google Scholar 

  28. Orvedahl, A. et al. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1, 23–35 (2007).

    CAS  Article  Google Scholar 

  29. Grey, F., Meyers, H., White, E. A., Spector, D. H. & Nelson, J. A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog. 3, e163 (2007).

    Article  Google Scholar 

  30. Lo, A. K. et al. Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc. Natl Acad. Sci. USA 104, 16164–16169 (2007).

    ADS  CAS  Article  Google Scholar 

  31. Grey, F. & Nelson, J. Identification and function of human cytomegalovirus microRNAs. J. Clin. Virol. 41, 186–191 (2008).

    CAS  Article  Google Scholar 

  32. Skalsky, R. L. et al. Kaposi's sarcoma-associated herpesvirus encodes an ortholog of miR-155. J. Virol. 81, 12836–12845 (2007).

    CAS  Article  Google Scholar 

  33. Gottwein, E. et al. A viral microRNA functions as an ortholog of cellular miR-155. Nature 450, 1096–1099 (2007).

    ADS  CAS  Article  Google Scholar 

  34. Zhao, Y. et al. A functional microRNA-155 ortholog encoded by the oncogenic Marek's disease virus. J. Virol. 83, 489–492 (2009).

    CAS  Article  Google Scholar 

  35. Yin, Q. et al. MicroRNA-155 is an Epstein–Barr virus-induced gene that modulates Epstein–Barr virus-regulated gene expression pathways. J. Virol. 82, 5295–5306 (2008).

    CAS  Article  Google Scholar 

  36. Samols, M. A. et al. Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog. 3, e65 (2007).

    Article  Google Scholar 

  37. Stern-Ginossar, N. et al. Host immune system gene targeting by a viral miRNA. Science 317, 376–381 (2007).

    ADS  CAS  Article  Google Scholar 

  38. Stern-Ginossar, N. et al. Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nature Immunol. 9, 1065–1073 (2008).

    CAS  Article  Google Scholar 

  39. Choy, E. Y. et al. An Epstein–Barr virus-encoded microRNA targets PUMA to promote host cell survival. J. Exp. Med. 205, 2551–2560 (2008).

    ADS  CAS  Article  Google Scholar 

  40. Xia, T. et al. EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3. Cancer Res. 68, 1436–1442 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Work in my laboratory was supported by the National Institutes of Health (grant numbers GM071408 and AI067968). I thank M. Luftig, E. Gottwein and J. L. Umbach for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to the author (culle002@mc.duke.edu).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cullen, B. Viral and cellular messenger RNA targets of viral microRNAs. Nature 457, 421–425 (2009). https://doi.org/10.1038/nature07757

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07757

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing