Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

On the road to reading the RNA-interference code

Abstract

The finding that sequence-specific gene silencing occurs in response to the presence of double-stranded RNAs has had an enormous impact on biology, uncovering an unsuspected level of regulation of gene expression. This process, known as RNA interference (RNAi) or RNA silencing, involves small non-coding RNAs, which associate with nuclease-containing regulatory complexes and then pair with complementary messenger RNA targets, thereby preventing the expression of these mRNAs. Remarkable progress has been made towards understanding the underlying mechanisms of RNAi, raising the prospect of deciphering the 'RNAi code' that, like transcription factors, allows the fine-tuning and networking of complex suites of gene activity, thereby specifying cellular physiology and development.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Small RNA production and RNA silencing.
Figure 2: Sorting of small RNAs onto distinct Argonaute proteins.

References

  1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans . Nature 391, 806–811 (1998).

    ADS  CAS  PubMed  Google Scholar 

  2. Stefani, G. & Slack, F. J. Small non-coding RNAs in animal development. Nature Rev. Mol. Cell Biol. 9, 219–230 (2008).

    CAS  Google Scholar 

  3. Ding, S. W. & Voinnet, O. Antiviral immunity directed by small RNAs. Cell 130, 413–426 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Girard, A. & Hannon, G. J. Conserved themes in small-RNA-mediated transposon control. Trends Cell Biol. 18, 136–148 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hobert, O. Common logic of transcription factor and microRNA action. Trends Biochem. Sci. 29, 462–468 (2004).

    CAS  PubMed  Google Scholar 

  6. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).

    ADS  CAS  PubMed  Google Scholar 

  7. Tomari, Y. & Zamore, P. D. Machines for RNAi. Genes Dev. 19, 517–529 (2005).

    CAS  PubMed  Google Scholar 

  8. Hutvagner, G. & Simard, M. J. Argonaute proteins: key players in RNA silencing. Nature Rev. Mol. Cell Biol. 9, 22–32 (2008).

    CAS  Google Scholar 

  9. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    ADS  CAS  PubMed  Google Scholar 

  10. Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437 (2004).

    ADS  CAS  PubMed  Google Scholar 

  11. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).

    CAS  PubMed  Google Scholar 

  12. Chapman, E. J. & Carrington, C. Specialization and evolution of endogenous small RNA pathways. Nature Rev. Genet. 8, 884–896 (2007).

    CAS  PubMed  Google Scholar 

  13. Mardis, E. R. The impact of next-generation sequencing technology on genetics. Trends Genet. 24, 133–141 (2008).

    CAS  PubMed  Google Scholar 

  14. Zhang, H., Kolb, F. A., Jaskiewicz, L., Westhof, E. & Filipowicz, W. Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57–68 (2004).

    CAS  PubMed  Google Scholar 

  15. MacRae, I. J., Zhou, K. & Doudna, J. A. Structural determinants of RNA recognition and cleavage by Dicer. Nature Struct. Mol. Biol. 14, 934–940 (2007).

    CAS  Google Scholar 

  16. Heimberg, A. M. et al. MicroRNAs and the advent of vertebrate morphological complexity. Proc. Natl Acad. Sci. USA 105, 2946–2950 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, V. N. MicroRNA biogenesis: coordinated cropping and dicing. Nature Rev. Mol. Cell Biol. 6, 376–385 (2005).

    CAS  Google Scholar 

  18. Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha–DGCR8 complex. Cell 125, 887–901 (2006).

    CAS  PubMed  Google Scholar 

  19. Zeng, Y., Yi, R. & Cullen, B. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 24, 138–148 (2005).

    CAS  PubMed  Google Scholar 

  20. Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F. & Hannon, G. J. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235 (2004).

    ADS  CAS  PubMed  Google Scholar 

  21. Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).

    ADS  CAS  PubMed  Google Scholar 

  22. Ruby, J. G., Jan, C. H. & Bartel, D. P. Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M. & Lai, E. C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila . Cell 130, 89–100 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    CAS  PubMed  Google Scholar 

  25. Brennecke, J., Stark, A., Russell, R. B. & Cohen, S. M. Principles of microRNA–target recognition. PLoS Biol. 3, e85 (2005).

    PubMed  PubMed Central  Google Scholar 

  26. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Morin, R. D. et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 18, 610–621 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Azuma-Mukai, A. et al. Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing. Proc. Natl Acad. Sci. USA 105, 7964–7969 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Faehnle, C. R. & Joshua-Tor, L. Argonautes confront new small RNAs. Curr. Opin. Chem. Biol. 11, 569–577 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, Y., Sheng, G., Juranek, S., Tuschl, T. & Patel, D. J. Structure of the guide-strand-containing argonaute silencing complex. Nature 456, 209–213 (2008).

  31. Vagin, V. V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320–324 (2006). This paper was the first to describe a Dicer-independent pathway for the biogenesis of the guide strand of small RNAs.

    ADS  CAS  PubMed  Google Scholar 

  32. Saito, K. et al. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev. 20, 2214–2222 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Girard, A., Sachidanandam, R., Hannon, G. J. & Carmell, M. A. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199–202 (2006).

    ADS  PubMed  Google Scholar 

  34. Aravin, A. et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203–207 (2006).

    ADS  CAS  PubMed  Google Scholar 

  35. Lau, N. C. et al. Characterization of the piRNA complex from rat testes. Science 313, 363–367 (2006).

    ADS  CAS  PubMed  Google Scholar 

  36. Watanabe, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 20, 1732–1743 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yin, H. & Lin, H. An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster . Nature 450, 304–308 (2007).

    ADS  CAS  PubMed  Google Scholar 

  38. Saito, K. et al. Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi- interacting RNAs at their 3′ ends. Genes Dev. 21, 1603–1608 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Horwich, M. D. et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol. 17, 1265–1272 (2007).

    CAS  PubMed  Google Scholar 

  40. Kirino, Y. & Mourelatos, Z. Mouse Piwi-interacting RNAs are 2′-O-methylated at their 3′ termini. Nature Struct. Mol. Biol. 14, 347–348 (2007).

    CAS  Google Scholar 

  41. Ohara, T. et al. The 3′ termini of mouse Piwi-interacting RNAs are 2′-O-methylated. Nature Struct. Mol. Biol. 14, 349–350 (2007).

    CAS  Google Scholar 

  42. Houwing, S. et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell 129, 69–82 (2007).

    CAS  PubMed  Google Scholar 

  43. Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila . Cell 128, 1089–1103 (2007).

    CAS  PubMed  Google Scholar 

  44. Gunawardane, L. S. et al. A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila . Science 315, 1587–1590 (2007). References 43 and 44 were the first to describe slicer-mediated small RNA production.

    ADS  CAS  PubMed  Google Scholar 

  45. Aravin, A. A., Sachidanandam, R., Girard, A., Fejes-Toth, K. & Hannon, G. J. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316, 744–747 (2007).

    ADS  CAS  PubMed  Google Scholar 

  46. Ruby, J. G. et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans . Cell 127, 1193–1207 (2006).

    CAS  PubMed  Google Scholar 

  47. Batista, P. J. et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans . Mol. Cell 31, 67–78 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Das, P. P. et al. Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol. Cell 31, 79–90 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mochizuki, K. & Gorovsky, M. A. A Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase. Genes Dev. 19, 77–89 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yigit, E. et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127, 747–757 (2006). This paper shows that RNAi occurs by a two-step pathway in C. elegans.

    CAS  PubMed  Google Scholar 

  51. Pak, J. & Fire, A. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315, 241–244 (2007).

    ADS  CAS  PubMed  Google Scholar 

  52. Sijen, T., Steiner, F. A., Thijssen, K. L. & Plasterk, R. H. Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science 315, 244–247 (2007).

    ADS  CAS  PubMed  Google Scholar 

  53. Aoki, K., Moriguchi, H., Yoshioka, T., Okawa, K. & Tabara, H. In vitro analyses of the production and activity of secondary small interfering RNAs in C. elegans . EMBO J. 26, 5007–5019 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Czech, B. et al. An endogenous small interfering RNA pathway in Drosophila . Nature 453, 798–802 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kawamura, Y. et al. Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature 453, 793–797 (2008).

    ADS  CAS  PubMed  Google Scholar 

  56. Okamura, K. et al. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 453, 803–806 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ghildiyal, M. et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320, 1077–1081 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81 (2004).

    CAS  PubMed  Google Scholar 

  59. Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Saito, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol. 3, e235 (2005).

    PubMed  PubMed Central  Google Scholar 

  61. Förstemann, K. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol. 3, e236 (2005).

    PubMed  PubMed Central  Google Scholar 

  62. Liu, Q. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921–1925 (2003).

    ADS  CAS  PubMed  Google Scholar 

  63. Tam, O. H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–538 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Watanabe, T. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 539–543 (2008).

    ADS  CAS  PubMed  Google Scholar 

  65. Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    CAS  PubMed  Google Scholar 

  66. Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    CAS  PubMed  Google Scholar 

  67. Liu, X., Jiang, F., Kalidas, S., Smith, D. & Liu, Q. Dicer-2 and R2D2 coordinately bind siRNA to promote assembly of the siRISC complexes. RNA 12, 1514–1520 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tomari, Y., Matranga, C., Haley, B., Martinez, N. & Zamore, P. D. A protein sensor for siRNA asymmetry. Science 306, 1377–1380 (2004).

    ADS  CAS  PubMed  Google Scholar 

  69. Matranga, C., Tomari, Y., Shin, C., Bartel, D. P. & Zamore, P. D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607–620 (2005).

    CAS  PubMed  Google Scholar 

  70. Rand, T. A., Petersen, S., Du, F. & Wang, X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123, 621–629 (2005).

    CAS  PubMed  Google Scholar 

  71. Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H. & Siomi, M. C. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev. 19, 2837–2848 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Gregory, R. I., Chendrimada, T. P., Cooch, N. & Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631–640 (2005).

    CAS  PubMed  Google Scholar 

  73. Maniataki, E. & Mourelatos, Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev. 19, 2979–2990 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Robb, G. B. & Rana, T. M. RNA helicase A interacts with RISC in human cells and functions in RISC loading. Mol. Cell 26, 523–537 (2007).

    CAS  PubMed  Google Scholar 

  75. Tomari, Y., Du, T. & Zamore, P. D. Sorting of Drosophila small silencing RNAs. Cell 130, 299–308 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Mi, S. et al. Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133, 116–127 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Montgomery, T. A. et al. Specificity of ARGONAUTE7–miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133, 128–141 (2008). References 76 and 77 show that the sorting of plant miRNAs onto Argonaute proteins depends mainly on the nucleotide at the 5′ end.

    CAS  PubMed  Google Scholar 

  78. Pham, J. W. & Sontheimer, E. J. Molecular requirements for RNA-induced silencing complex assembly in the Drosophila RNA interference pathway. J. Biol. Chem. 280, 39278–39283 (2005).

    CAS  PubMed  Google Scholar 

  79. Weitzer, S. & Martinez, J. The human RNA kinase hClp1 is active on 3′ transfer RNA exons and short interfering RNAs. Nature 447, 222–226 (2007).

    ADS  CAS  PubMed  Google Scholar 

  80. Paushkin, S. V., Patel, M., Furia, B. S., Peltz, S. W. & Trotta, C. R. Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3′ end formation. Cell 117, 311–321 (2004).

    CAS  PubMed  Google Scholar 

  81. Danckwardt, S., Hentze, M. W. & Kulozik, A. E. 3′ end mRNA processing: molecular mechanisms and implications for health and disease. EMBO J. 27, 482–498 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kennedy, S., Wang, D. & Ruvkun, G. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans . Nature 427, 645–649 (2004).

    ADS  CAS  PubMed  Google Scholar 

  83. Iida, T., Kawaguchi, R. & Nakayama, J. Conserved ribonuclease, Eri1, negatively regulates heterochromatin assembly in fission yeast. Curr. Biol. 16, 1459–1464 (2006).

    CAS  PubMed  Google Scholar 

  84. Bühler, M., Haas, W., Gygi, S. P. & Moazed, D. RNAi-dependent and -independent RNA turnover mechanisms contribute to heterochromatic gene silencing. Cell 129, 707–721 (2007).

    PubMed  Google Scholar 

  85. Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nature Struct. Mol. Biol. 11, 599–606 (2004).

    CAS  Google Scholar 

  86. Ameres, S. L., Martinez, J. & Schroeder, R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130, 101–112 (2007).

    CAS  PubMed  Google Scholar 

  87. Dreyfuss, G., Kim, V. N. & Kataoka, N. Messenger-RNA-binding proteins and the messages they carry. Nature Rev. Mol. Cell Biol. 3, 195–205 (2002).

    CAS  Google Scholar 

  88. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Rev. Genet. 9, 102–114 (2008).

    CAS  PubMed  Google Scholar 

  89. Eulalio, A., Behm-Ansmant, I. & Izaurralde, E. P bodies: at the crossroads of post-transcriptional pathways. Nature Rev. Mol. Cell Biol. 8, 9–22 (2007).

    CAS  Google Scholar 

  90. Kedde, M. et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131, 1273–1286 (2007). This paper shows that the final outcome of miRNA regulation is affected by the interaction of proteins other than Argonaute with the target mRNA.

    CAS  PubMed  Google Scholar 

  91. Mlotshwa, S., Pruss, G. J. & Vance, V. Small RNAs in viral infection and host defense. Trends Plant Sci. 13, 375–382 (2008).

    CAS  PubMed  Google Scholar 

  92. Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of microRNA processing by Lin28. Science 320, 97–100 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biol. 10, 987–993 (2008).

    CAS  PubMed  Google Scholar 

  94. Davis, B. N., Hilyard, A. C., Lagna, G. & Hata, A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454, 56–61 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Guil, S. & Cáceres, J. F. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nature Struct. Mol. Biol. 14, 591–596 (2007).

    CAS  Google Scholar 

  96. Franco-Zorrilla, J. M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genet. 39, 1033–1037 (2007). This paper describes how the activity of miRNAs can be regulated by transcripts that mimic the target transcript.

    CAS  PubMed  Google Scholar 

  97. ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

  98. Farazi, T. A., Juranek, S. A. & Tuschl, T. The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 135, 1201–1214 (2008).

    CAS  PubMed  Google Scholar 

  99. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 . Cell 75, 843–854 (1993).

    CAS  PubMed  Google Scholar 

  100. Wightman, B., Ha, I. & Ruvkun, G. Post-transcriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans . Cell 75, 855–862 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose relevant primary publications were not cited because of space constraints. We thank Y. Tomari, K. Aoki, Y. Watanabe and all the members of the Siomi laboratory for their comments and critical reading of the manuscript. Work in our laboratory is supported by grants from the Ministry of Education, Culture, Sports, Science and Technology (MEXT, Japan) and the New Energy and Industrial Technology Development Organization (Japan). M.C.S. is associate professor of the Global Centre of Excellence for Human Metabolomics Systems Biology (MEXT).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to the authors (awa403@sc.itc.keio.ac.jp; siomim@sc.itc.keio.ac.jp).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Siomi, H., Siomi, M. On the road to reading the RNA-interference code. Nature 457, 396–404 (2009). https://doi.org/10.1038/nature07754

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07754

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing