Friction laws at the nanoscale

Abstract

Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale1, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance2,3. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments4,5,6,7. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories8,9,10 of friction can be applied at the nanoscale.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Contact between an amorphous carbon tip and a diamond sample.
Figure 2: Mechanics of non-adhesive contacts.
Figure 3: Mechanics of adhesive contacts.

References

  1. 1

    Luan, B. & Robbins, M. O. The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Delrio, F. W. et al. The role of van der Waals forces in adhesion of micromachined surfaces. Nature Mater. 4, 629–634 (2005)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Zykova-Timan, T., Ceresoli, D. & Tosatti, E. Peak effect versus skating in high-temperature nanofriction. Nature Mater. 6, 230–234 (2007)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Colburn, T. J. & Leggett, G. J. Influence of solvent environment and tip chemistry on the contact mechanics of tip-sample interactions in friction force microscopy of self-assembled monolayers of mercaptoundecanoic acid and dodecanethiol. Langmuir 23, 4959–4964 (2007)

    CAS  Article  Google Scholar 

  5. 5

    Gao, J. et al. Frictional forces and Amontons' law: from the molecular to the macroscopic scale. J. Phys. Chem. 108, 3410–3425 (2004)

    CAS  Article  Google Scholar 

  6. 6

    Grierson, D. S. Nanotribological Properties of Nanostructured Hard Carbon Thin Films. PhD thesis, Univ. Wisconsin (2008)

    Google Scholar 

  7. 7

    Ruths, M. Boundary friction of aromatic self-assembled monolayers: Comparison of systems with one or both sliding surfaces covered with a thiol monolayer. Langmuir 19, 6788–6795 (2003)

    CAS  Article  Google Scholar 

  8. 8

    Müser, M. H. A rigorous, field-theoretical approach to the contact mechanics of rough, elastic solids. Phys. Rev. Lett. 100, 055504 (2008)

    ADS  Article  Google Scholar 

  9. 9

    Persson, B. N. J. Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840–3861 (2001)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Greenwood, J. A. & Williamson, J. B. P. Contact of nominally flat surfaces. Proc. R. Soc. Lond. A 295, 300–319 (1966)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Amontons, G. De la resistance causée dans les machines. Mem. Acad. R. A 275–282 (1699)

  12. 12

    Bowden, F. P. & Tabor, D. The Friction and Lubrication of Solids (Clarendon, 1950)

    Google Scholar 

  13. 13

    Szlufarska, I., Chandross, M. & Carpick, R. W. Recent advances in single-asperity nanotribology. J. Phys. D 41, 123001 (2008)

    ADS  Article  Google Scholar 

  14. 14

    Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Perry, S. S. Scanning probe microscopy measurements of friction. MRS Bull. 29, 478–483 (2004)

    CAS  Article  Google Scholar 

  16. 16

    Bush, A. W., Gibson, R. D. & Thomas, T. R. The elastic contact of a rough surface. Wear 35, 87–111 (1975)

    Article  Google Scholar 

  17. 17

    Hertz, H. On the contact of elastic solids. J. Reine Angew. Math. 92, 156 (1881)

    MATH  Google Scholar 

  18. 18

    Maugis, D. Adhesion of spheres—the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Riedo, E., Chevrier, J., Comin, F. & Brune, H. Nanotribology of carbon based thin films: The influence of film structure and surface morphology. Surf. Sci. 477, 25–34 (2001)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Gao, G. T., Cannara, R. J., Carpick, R. W. & Harrison, J. A. Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM. Langmuir 23, 5394–5405 (2007)

    CAS  Article  Google Scholar 

  21. 21

    Pietrement, O. & Troyon, M. Study of the interfacial shear strength pressure dependence by modulated lateral force microscopy. Langmuir 17, 6540–6546 (2001)

    CAS  Article  Google Scholar 

  22. 22

    Socoliuc, A., Bennewitz, R., Gnecco, E. & Meyer, E. Transition from stick-slip to continuous sliding in atomic friction: Engineering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Chandross, M., Lorenz, C. D., Stevens, M. & Grest, G. S. Simulations of nanotribology with realistic probe tip models. Langmuir 24, 1240–1246 (2008)

    CAS  Article  Google Scholar 

  24. 24

    Szlufarska, I., Nakano, A. & Vashishta, P. A crossover in the mechanical response of nanocrystalline ceramics. Science 309, 911–914 (2005)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Wenning, L. & Müser, M. H. Friction laws for elastic nanoscale contacts. Europhys. Lett. 54, 693–699 (2001)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Brenner, D. et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14, 783–802 (2002)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Johnson, K. L. Adhesion and friction between a smooth elastic spherical asperity and a plane surface. Proc. R. Soc. Lond. Ser. A 453, 163–179 (1997)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Luan, B. & Robbins, M. O. Contact of single asperities with varying adhesion: comparing continuum mechanics to atomistic simulations. Phys. Rev. E 74, 026111 (2006)

    ADS  Article  Google Scholar 

  29. 29

    Israelachvili, J. N. & Berman, A. D. in Handbook of Micro/Nanotribology (ed. Bhushan, B.) 2nd edn, 371–432 (CRC Press, 1999)

    Google Scholar 

  30. 30

    Carpick, R. W., Ogletree, D. F. & Salmeron, M. A general equation for fitting contact area and friction vs load measurements. J. Colloid Interface Sci. 211, 395–400 (1999)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Schwarz, U. D. A generalized analytical model for the elastic deformation of an adhesive contact between a sphere and a flat surface. J. Colloid Interface Sci. 261, 99–106 (2003)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Tabor, D. Surface forces and surface interactions. J. Colloid Interface Sci. 58, 2–13 (1977)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Horn, R. G., Israelachvili, J. N. & Pribac, F. Measurement of the deformation and adhesion of solids in contact. J. Colloid Interface Sci. 115, 480–492 (1987)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Ruths, M., Alcantar, N. A. & Israelachvili, J. N. Boundary friction of aromatic silane self-assembled monolayers measured with the surface forces apparatus and friction force microscopy. J. Phys. Chem. B 107, 11149–11157 (2003)

    CAS  Article  Google Scholar 

  35. 35

    Putman, C. A. J., Igarashi, V. & Kaneko, R. Single-asperity friction in friction force microscopy — The composite-tip model. Appl. Phys. Lett. 66, 3221–3223 (1995)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank D. Morgan for helpful discussions. Financial support from the National Science Foundation grant DMR-0512228 and from the American Chemical Society PRF-47978-G5 grant is gratefully acknowledged.

Author Contributions I.S. conceived the simulations and Y.M carried them out. Y.M. and I.S. designed the data analysis and Y.M. carried it out. I.S. and Y.M. co-wrote the paper. K.T.T. provided guidance and software for finite element analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Izabela Szlufarska.

Supplementary information

Supplementary Information

This file contains, Supplementary Methods and Data, Supplementary Figures 1-3 with Legends and Supplementary References (PDF 1249 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mo, Y., Turner, K. & Szlufarska, I. Friction laws at the nanoscale. Nature 457, 1116–1119 (2009). https://doi.org/10.1038/nature07748

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.