Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Life without a wall or division machine in Bacillus subtilis

A Corrigendum to this article was published on 23 July 2009

Abstract

The cell wall is an essential structure for virtually all bacteria, forming a tough outer shell that protects the cell from damage and osmotic lysis. It is the target of our best antibiotics. L-form strains are wall-deficient derivatives of common bacteria that have been studied for decades. However, they are difficult to generate and typically require growth for many generations on osmotically protective media with antibiotics or enzymes that kill walled forms. Despite their potential importance for understanding antibiotic resistance and pathogenesis, little is known about their basic cell biology or their means of propagation. We have developed a controllable system for generating L-forms in the highly tractable model bacterium Bacillus subtilis. Here, using genome sequencing, we identify a single point mutation that predisposes cells to grow without a wall. We show that propagation of L-forms does not require the normal FtsZ-dependent division machine but occurs by a remarkable extrusion-resolution mechanism. This novel form of propagation provides insights into how early forms of cellular life may have proliferated.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Controlled generation of B. subtilis L-forms in cells with a repressible murE operon.
Figure 2: L-forms do not require FtsZ for division.
Figure 3: Novel mechanisms of proliferation revealed by time-lapse imaging of L-forms.

References

  1. Rothfield, L., Taghbalout, A. & Shih, Y. L. Spatial control of bacterial division-site placement. Nature Rev. Microbiol. 3, 959–968 (2005)

    Article  CAS  Google Scholar 

  2. Weiss, D. S. Bacterial cell division and the septal ring. Mol. Microbiol. 54, 588–597 (2004)

    Article  CAS  Google Scholar 

  3. Höltje, J. V. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli . Microbiol. Mol. Biol. Rev. 62, 181–203 (1998)

    Article  Google Scholar 

  4. Klieneberger, E. The natural occurrence of pleuropneumonia-like organisms in apparent symbiosis with Streptobacillus moniliformis and other bacteria. J. Pathol. Bacteriol. 40, 93–105 (1935)

    Article  Google Scholar 

  5. Allan, E. J., Hoischen, C. & Gumpert, J. Bacterial L-forms. Adv. Appl. Microbiol. (in the press)

  6. Joseleau-Petit, D. et al. Unstable Escherichia coli L-forms revisited: Growth requires peptidoglycan synthesis. J. Bacteriol. 189, 6512–6520 (2007)

    Article  CAS  Google Scholar 

  7. Allan, E. J. Induction and cultivation of a stable L-form of Bacillus subtilis . J. Appl. Bacteriol. 70, 339–343 (1991)

    Article  CAS  Google Scholar 

  8. Daniel, R. A. & Errington, J. DNA sequence of the murE-murD region of Bacillus subtilis 168. Gen. Microbiol. 139, 361–370 (1993)

    Article  CAS  Google Scholar 

  9. Leaver, M. & Errington, J. Roles for MreC and MreD proteins in helical growth of the cylindrical cell wall in Bacillus subtilis . Mol. Microbiol. 57, 1196–1209 (2005)

    Article  CAS  Google Scholar 

  10. Murray, T., Popham, T. & Setlow, P. Bacillus subtilis cells lacking penicillin-binding protein 1 require increased levels of divalent cations for growth. J. Bacteriol. 180, 4555–4563 (1998)

    Article  CAS  Google Scholar 

  11. Rogers, H. J., Thurman, P. F. & Buxton, R. S. Magnesium and anion requirements of rodB mutants of Bacillus subtilis . J. Bacteriol. 125, 556–564 (1976)

    Article  CAS  Google Scholar 

  12. Formstone, A. & Errington, J. A magnesium-dependent mreB null mutant: Implications for the role of mreB in Bacillus subtilis . Mol. Microbiol. 55, 1646–1657 (2005)

    Article  CAS  Google Scholar 

  13. Gilpin, R. W., Young, F. E. & Chatterjee, A. N. Characterization of a stable L-form of Bacillus subtilis 168. J. Bacteriol. 113, 486–499 (1973)

    Article  CAS  Google Scholar 

  14. Burmeister, H. R. & Hesseltine, C. W. Induction and propagation of a Bacillus subtilis L-form in natural and synthetic media. J. Bacteriol. 95, 1857–1861 (1968)

    Article  CAS  Google Scholar 

  15. Gilpin, R. W. & Nagy, S. S. Time-lapse photography of Bacillus subtilis L-forms replicating in liquid medium. J. Bacteriol. 127, 1018–1021 (1976)

    Article  CAS  Google Scholar 

  16. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Moszer, I. et al. SubtiList: The reference database for the Bacillus subtilis genome. Nucleic Acids Res. 30, 62–65 (2002)

    Article  CAS  Google Scholar 

  18. Fujisaki, S. et al. Cloning and nucleotide sequence of the ispA gene responsible for farnesyl diphosphate synthase activity in Escherichia coli . J. Biochem. 108, 995–1000 (1990)

    Article  CAS  Google Scholar 

  19. Hosfield, D. J. et al. Structural basis for bisphosphonate-mediated inhibition of isoprenoid biosynthesis. J. Biol. Chem. 279, 8526–8529 (2004)

    Article  CAS  Google Scholar 

  20. Joly, A. & Edwards, P. A. Effect of site-directed mutagenesis of conserved aspartate and arginine residues upon farnesyl diphosphate synthase activity. J. Biol. Chem. 268, 26983–26989 (1993)

    Article  CAS  Google Scholar 

  21. Domingue, G. J. & Woody, H. B. Bacterial persistence and expression of disease. Clin. Microbiol. Rev. 10, 320–344 (1997)

    Article  Google Scholar 

  22. Wyrick, P. B. & Rogers, H. J. Isolation and characterization of cell wall-defective variants of Bacillus subtilis and Bacillus licheniformis . J. Bacteriol. 116, 456–465 (1973)

    Article  CAS  Google Scholar 

  23. Ward, J. B. Peptidoglycan synthesis in L-phase variants of Bacillus licheniformis and Bacillus subtilis . J. Bacteriol. 124, 668–678 (1975)

    Article  CAS  Google Scholar 

  24. King, J. R., Prescott, B. & Caldes, G. Lack of murein in a formamide-insoluble fraction from the stable L-form of Streptococcus faecium . J. Bacteriol. 102, 196–197 (1970)

    Article  CAS  Google Scholar 

  25. Beall, B. & Lutkenhaus, J. FtsZ in Bacillus subtilis is required for vegetative septation and for asymmetric septation during sporulation. Genes Dev. 5, 447–455 (1991)

    Article  CAS  Google Scholar 

  26. Claessen, D. et al. Control of the cell elongation-division cycle by shuttling of PBP1 protein in Bacillus subtilis . Mol. Microbiol. 68, 1029–1046 (2008)

    Article  CAS  Google Scholar 

  27. Razin, S., Yogev, D. & Naot, Y. Molecular biology and pathogenicity of mycoplasmas. Microbiol. Mol. Biol. Rev. 62, 1094–1156 (1998)

    Article  CAS  Google Scholar 

  28. Glockner, F. O. et al. Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc. Natl Acad. Sci. USA 100, 8298–8303 (2003)

    Article  ADS  CAS  Google Scholar 

  29. Kandler, O. & Konig, H. Cell wall polymers in Archaea (Archaebacteria). Cell. Mol. Life Sci. 54, 305–308 (1998)

    Article  CAS  Google Scholar 

  30. Margolin, W. Themes and variations in prokaryotic cell division. FEMS Microbiol. Rev. 24, 531–548 (2000)

    Article  CAS  Google Scholar 

  31. Hanczyc, M. M., Fujikawa, S. M. & Szostak, J. W. Experimental models of primitive cellular compartments: Encapsulation, growth, and division. Science 302, 618–622 (2003)

    Article  ADS  CAS  Google Scholar 

  32. Jones, L. J. F., Carballido-López, R. & Errington, J. Control of cell shape in bacteria: Helical, actin-like filaments in Bacillus subtilis . Cell 104, 913–922 (2001)

    Article  CAS  Google Scholar 

  33. Abhayawardhane, Y. & Stewart, G. C. Bacillus subtilis possesses a second determinant with extensive sequence similarity to the Escherichia coli mreB morphogene. J. Bacteriol. 177, 765–773 (1995)

    Article  CAS  Google Scholar 

  34. Soufo, H. J. & Graumann, P. L. Actin-like proteins MreB and Mbl from Bacillus subtilis are required for bipolar positioning of replication origins. Curr. Biol. 13, 1916–1920 (2003)

    Article  Google Scholar 

  35. Vicente, M., Gomez, M. J. & Ayala, J. A. Regulation of transcription of cell division genes in the Escherichia coli dcw cluster. Cell. Mol. Life Sci. 54, 317–324 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Swan for assistance with bioinformatics; A. Danchin for providing unpublished sequence data; E. J. Allan for providing the L-form strain that sparked our interest; T. Davey and V. Thompson of the Electron Microscopy Research Service of Newcastle University for technical assistance with electron microscopy; S. Gruber for help with quantitative real time PCR; J.-W. Veening and H. Murray for supplying strains and advice; and D. Claessen, K. Gerdes, H. Murray and W. Vollmer for critical reading of the manuscript. M.L. was supported by the UK Biotechnology and Biological Sciences Research Council. P.D.-C. was supported by an EMBO Long-Term Fellowship.

Author Contributions M.L. and J.E. designed the research and wrote the manuscript. M.L. performed the experiments. P.D.-C. constructed plasmids and strains and contributed to discussions. J.M.C. performed the genome sequencing. R.A.D. constructed strains, and contributed to discussions and the design of the research. All authors commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Errington.

Supplementary information

Supplementary Information

This file contains Supplementary Results and Discussion, Supplementary Tables 1-2, Supplementary References, Supplementary Figures 1-7 with Legends and Supplementary Movies Legends 1-4 (PDF 3244 kb)

Supplementary Movie 1

This file shoes time-lapse microscopy of a field of growing L-forms. (See file s1 for full legend). (AVI 4176 kb)

Supplementary Movie 2

This file shows time-lapse microscopy of an L-form producing an extrusion that resolves to form multiple progeny. (See file s1 for full legend). (AVI 4718 kb)

Supplementary Movie 3

This file shows time-lapse microscopy of an L-form dividing to produce pairs of progeny. (See file s1 for full legend). (AVI 1228 kb)

Supplementary Movie 4

This file shows time-lapse microscopy showing many small bodies erupting form the surface of a large L-form. (See file s1 for full legend). (AVI 4223 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leaver, M., Domínguez-Cuevas, P., Coxhead, J. et al. Life without a wall or division machine in Bacillus subtilis. Nature 457, 849–853 (2009). https://doi.org/10.1038/nature07742

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07742

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing