Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Large-scale pattern growth of graphene films for stretchable transparent electrodes


Problems associated with large-scale pattern growth of graphene constitute one of the main obstacles to using this material in device applications1. Recently, macroscopic-scale graphene films were prepared by two-dimensional assembly of graphene sheets chemically derived from graphite crystals and graphene oxides2,3. However, the sheet resistance of these films was found to be much larger than theoretically expected values. Here we report the direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers, and present two different methods of patterning the films and transferring them to arbitrary substrates. The transferred graphene films show very low sheet resistance of 280 Ω per square, with 80 per cent optical transparency. At low temperatures, the monolayers transferred to silicon dioxide substrates show electron mobility greater than 3,700 cm2 V-1 s-1 and exhibit the half-integer quantum Hall effect4,5, implying that the quality of graphene grown by chemical vapour deposition is as high as mechanically cleaved graphene6. Employing the outstanding mechanical properties of graphene7, we also demonstrate the macroscopic use of these highly conducting and transparent electrodes in flexible, stretchable, foldable electronics8,9.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis, etching and transfer processes for the large-scale and patterned graphene films.
Figure 2: Various spectroscopic analyses of the large-scale graphene films grown by CVD.
Figure 3: Transfer processes for large-scale graphene films.
Figure 4: Optical and electrical properties of the graphene films.

Similar content being viewed by others


  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007)

    Article  ADS  CAS  Google Scholar 

  2. Li, X. et al. Highly conducting graphene sheets and Langmuir–Blodgett films. Nature Nanotechnol. 3, 538–542 (2008)

    Article  ADS  CAS  Google Scholar 

  3. Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnol. 3, 270–274 (2008)

    Article  CAS  Google Scholar 

  4. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Zhang, Y., Tan, J. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  ADS  CAS  Google Scholar 

  8. Kim, D.-H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008)

    Article  ADS  CAS  Google Scholar 

  9. Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Han, M. Y., Oezyilmaz, B., Zhang, Y. & Kim, P. Energy band gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  11. Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2008)

    Article  ADS  Google Scholar 

  13. Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)

    Article  ADS  CAS  Google Scholar 

  15. Sutter, P. W., Flege, J.-I. & Sutter, E. A. Epitaxial graphene on ruthenium. Nature Mater. 7, 406–411 (2008)

    Article  ADS  CAS  Google Scholar 

  16. Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007)

    Article  ADS  CAS  Google Scholar 

  17. Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  ADS  CAS  Google Scholar 

  18. Li, D., Muller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnol. 3, 101–105 (2008)

    Article  ADS  CAS  Google Scholar 

  19. Obraztsov, A. N., Obraztsova, E. A., Tyurnina, A. V. & Zolotukhin, A. A. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 45, 2017–2021 (2007)

    Article  CAS  Google Scholar 

  20. Yu, Q. et al. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93, 113103 (2008)

    Article  ADS  Google Scholar 

  21. Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. article ASAP at 〈〉 (2008)

  22. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  ADS  CAS  Google Scholar 

  23. Khang, D.-Y. et al. Individual aligned single-wall carbon nanotubes on elastomeric substrates. Nano Lett. 8, 124–130 (2008)

    Article  ADS  CAS  Google Scholar 

  24. Yang, P. et al. Mirrorless lasing from mesostructured waveguides patterned by soft lithography. Science 287, 465–467 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008)

    Article  ADS  CAS  Google Scholar 

  26. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  ADS  CAS  Google Scholar 

  27. Lewis, J. Material challenge for flexible organic devices. Mater. Today 9, 38–45 (2006)

    Article  CAS  Google Scholar 

  28. Sun, Y., Choi, W. M., Jiang, H., Huang, Y. Y. & Rogers, J. A. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nature Nanotechnol. 1, 201–207 (2006)

    Article  ADS  CAS  Google Scholar 

  29. Khang, D.-Y., Jiang, H., Huang, Y. & Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006)

    Article  ADS  CAS  Google Scholar 

  30. Ko, H. C. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008)

    Article  ADS  CAS  Google Scholar 

Download references


We thank J. H. Han, J. H. Kim, H. Lim, S. K. Bae and H.-J. Shin for assisting in graphene synthesis and analysis. This work was supported by the Korea Science and Engineering Foundation grant funded by the Korea Ministry for Education, Science and Technology (Center for Nanotubes and Nanostructured Composites R11-2001-091-00000-0), the Global Research Lab programme (Korea Foundation for International Cooperation of Science and Technology), the Brain Korea 21 project (Korea Research Foundation) and the information technology research and development programme of the Korea Ministry of Knowledge Economy (2008-F024-01).

Author Contributions B.H.H. planned and supervised the project; J.-Y.C. supported and assisted in supervision on the project; S.Y.L, J.M.K. and K.S.K. advised on the project; K.S.K. and B.H.H. designed and performed the experiments; B.H.H., P.K., J.-H.A and K.S.K. analysed data and wrote the manuscript; Y.Z. and P.K. made the quantum Hall devices and the measurements; and H.J. and J.-H.A. helped with the transfer process and the electromechanical analyses.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Jae-Young Choi or Byung Hee Hong.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S6 and Supplementary Notes (PDF 332 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, K., Zhao, Y., Jang, H. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing