Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The subcellular organization of neocortical excitatory connections

Abstract

Understanding cortical circuits will require mapping the connections between specific populations of neurons1, as well as determining the dendritic locations where the synapses occur2. The dendrites of individual cortical neurons overlap with numerous types of local and long-range excitatory axons, but axodendritic overlap is not always a good predictor of actual connection strength3,4,5. Here we developed an efficient channelrhodopsin-2 (ChR2)-assisted method6,7,8 to map the spatial distribution of synaptic inputs, defined by presynaptic ChR2 expression, within the dendritic arborizations of recorded neurons. We expressed ChR2 in two thalamic nuclei, the whisker motor cortex and local excitatory neurons and mapped their synapses with pyramidal neurons in layers 3, 5A and 5B (L3, L5A and L5B) in the mouse barrel cortex. Within the dendritic arborizations of L3 cells, individual inputs impinged onto distinct single domains. These domains were arrayed in an orderly, monotonic pattern along the apical axis: axons from more central origins targeted progressively higher regions of the apical dendrites. In L5 arborizations, different inputs targeted separate basal and apical domains. Input to L3 and L5 dendrites in L1 was related to whisker movement and position, suggesting that these signals have a role in controlling the gain of their target neurons9. Our experiments reveal high specificity in the subcellular organization of excitatory circuits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Subcellular ChR2-assisted circuit mapping.
Figure 2: Subcellular distribution of inputs onto L3 pyramidal neurons.
Figure 3: Subcellular distribution of inputs onto L5B pyramidal neurons.
Figure 4: The laminar position of L5 pyramidal neurons determines the dendritic location of L2/3 inputs.

References

  1. 1

    Douglas, R. J. & Martin, K. A. Mapping the matrix: the ways of neocortex. Neuron 56, 226–238 (2007)

    CAS  Article  Google Scholar 

  2. 2

    London, M. & Hausser, M. Dendritic computation. Annu. Rev. Neurosci. 28, 503–532 (2005)

    CAS  Article  Google Scholar 

  3. 3

    White, E. L. Specificity of cortical synaptic connectivity: emphasis on perspectives gained from quantitative electron microscopy. J. Neurocytol. 31, 195–202 (2002)

    CAS  Article  Google Scholar 

  4. 4

    Dantzker, J. L. & Callaway, E. M. Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons. Nature Neurosci. 3, 701–707 (2000)

    CAS  Article  Google Scholar 

  5. 5

    Shepherd, G. M. G., Stepanyants, A., Bureau, I., Chklovskii, D. B. & Svoboda, K. Geometric and functional organization of cortical circuits. Nature Neurosci. 8, 782–790 (2005)

    CAS  Article  Google Scholar 

  6. 6

    Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. USA 100, 13940–13945 (2003)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nature Neurosci. 10, 663–668 (2007)

    CAS  Article  Google Scholar 

  8. 8

    Zhang, F., Wang, L. P., Boyden, E. S. & Deisseroth, K. Channelrhodopsin-2 and optical control of excitable cells. Nature Methods 3, 785–792 (2006)

    CAS  Article  Google Scholar 

  9. 9

    Larkum, M. E., Senn, W. & Luscher, H. R. Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cereb. Cortex 14, 1059–1070 (2004)

    Article  Google Scholar 

  10. 10

    Shu, Y., Yu, Y., Yang, J. & McCormick, D. A. Selective control of cortical axonal spikes by a slowly inactivating K+ current. Proc. Natl Acad. Sci. USA 104, 11453–11458 (2007)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Williams, S. R. & Mitchell, S. J. Direct measurement of somatic voltage clamp errors in central neurons. Nature Neurosci. 11, 790–798 (2008)

    CAS  Article  Google Scholar 

  12. 12

    Binzegger, T., Douglas, R. J. & Martin, K. A. A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453 (2004)

    CAS  Article  Google Scholar 

  13. 13

    Gilbert, C. D. Microcircuitry of the visual cortex. Annu. Rev. Neurosci. 6, 217–247 (1983)

    CAS  Article  Google Scholar 

  14. 14

    Feldmeyer, D., Lubke, J. & Sakmann, B. Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats. J. Physiol. (Lond.) 575, 583–602 (2006)

    CAS  Article  Google Scholar 

  15. 15

    Lu, S. M. & Lin, R. C. S. Thalamic afferents of the rat barrel cortex: a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. Somatosens. Mot. Res. 10, 1–16 (1993)

    CAS  Article  Google Scholar 

  16. 16

    Koralek, K. A., Jensen, K. F. & Killackey, H. P. Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex. Brain Res. 463, 346–351 (1988)

    CAS  Article  Google Scholar 

  17. 17

    Veinante, P. & Deschenes, M. Single-cell study of motor cortex projections to the barrel field in rats. J. Comp. Neurol. 464, 98–103 (2003)

    Article  Google Scholar 

  18. 18

    Lubke, J., Roth, A., Feldmeyer, D. & Sakmann, B. Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. Cereb. Cortex 13, 1051–1063 (2003)

    Article  Google Scholar 

  19. 19

    Hoogland, P. V., Welker, E. & Van der Loos, H. Organization of the projections from barrel cortex to thalamus in mice studied with Phaseolus vulgaris-leucoagglutinin and HRP. Exp. Brain Res. 68, 73–87 (1987)

    CAS  Article  Google Scholar 

  20. 20

    Mainen, Z. F. & Sejnowski, T. J. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382, 363–366 (1996)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Bureau, I., von Saint Paul, F. & Svoboda, K. Interdigitated paralemniscal and lemniscal pathways in the mouse barrel cortex. PLoS Biol. 4, e382 (2006)

    Article  Google Scholar 

  22. 22

    Thomson, A. M. & Bannister, A. P. Interlaminar connections in the neocortex. Cereb. Cortex 13, 5–14 (2003)

    Article  Google Scholar 

  23. 23

    Yu, C., Derdikman, D., Haidarliu, S. & Ahissar, E. Parallel thalamic pathways for whisking and touch signals in the rat. PLoS Biol. 4, e124 (2006)

    Article  Google Scholar 

  24. 24

    Berg, R. W. & Kleinfeld, D. Vibrissa movement elicited by rhythmic electrical microstimulation to motor cortex in the aroused rat mimics exploratory whisking. J. Neurophysiol. 90, 2950–2963 (2003)

    Article  Google Scholar 

  25. 25

    Harvey, C. D. & Svoboda, K. Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature 450, 1195–1200 (2007)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Polsky, A., Mel, B. W. & Schiller, J. Computational subunits in thin dendrites of pyramidal cells. Nature Neurosci. 7, 621–627 (2004)

    CAS  Article  Google Scholar 

  27. 27

    Losonczy, A. & Magee, J. C. Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50, 291–307 (2006)

    CAS  Article  Google Scholar 

  28. 28

    Saito, T. & Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240, 237–246 (2001)

    CAS  Article  Google Scholar 

  29. 29

    Atasoy, D., Aponte, Y., Su, H. H. & Sternson, S. M. A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008)

    CAS  Article  Google Scholar 

  30. 30

    Liao, G. Y. & Xu, B. Cre recombinase-mediated gene deletion in layer 4 of murine sensory cortical areas. Genesis 46, 289–293 (2008)

    Article  Google Scholar 

  31. 31

    Shepherd, G. M., Pologruto, T. A. & Svoboda, K. Circuit analysis of experience-dependent plasticity in the developing rat barrel cortex. Neuron 38, 277–289 (2003)

    CAS  Article  Google Scholar 

  32. 32

    Williams, S. R. & Stuart, G. J. Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. J. Neurophysiol. 83, 3177–3182 (2000)

    CAS  Article  Google Scholar 

  33. 33

    Nevian, T., Larkum, M. E., Polsky, A. & Schiller, J. Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nature Neurosci. 10, 206–214 (2007)

    CAS  Article  Google Scholar 

  34. 34

    Stepanyants, A., Hof, P. R. & Chklovskii, D. B. Geometry and structural plasticity of synaptic connectivity. Neuron 34, 275–288 (2002)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Karpova for help with viral constructs, G. Oliver and B. Xu for the Six3Cre mouse line, D. Chklovskii, G. Shepherd and Q. Wen for comments on the manuscript, Y. Yu for the model of the dendrotoxin-sensitive potassium channel and T. O’Connor for software development.

Author Contributions L.P. and K.S. designed the experiments. L.P. performed the experiments with help from T.M. (viral injections in M1 and related recordings). S.S. provided critical reagents. L.P. and K.S. analysed the data and wrote the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karel Svoboda.

Supplementary information

Supplementary Information

This file contains This file contains Supplementary Methods, a Supplementary Discussion, Supplementary References, Supplementary Table 1 and Supplementary Figures S1-S9 with Legends Methods, a Supplementary Discussion, Supplementary References, Supplementary Table 1 and Supplementary Figures S1-S9 with Legends (PDF 3903 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Petreanu, L., Mao, T., Sternson, S. et al. The subcellular organization of neocortical excitatory connections. Nature 457, 1142–1145 (2009). https://doi.org/10.1038/nature07709

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing