Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105

Abstract

Stellar-mass black holes with relativistic jets, also known as microquasars, mimic the behaviour of quasars and active galactic nuclei1. Because timescales around stellar-mass black holes are orders of magnitude smaller than those around more distant supermassive black holes, microquasars are ideal nearby ‘laboratories’ for studying the evolution of accretion disks and jet formation in black-hole systems2. Whereas studies of black holes have revealed a complex array of accretion activity, the mechanisms that trigger and suppress jet formation remain a mystery. Here we report the presence of a broad emission line in the faint, hard states and narrow absorption lines in the bright, soft states of the microquasar GRS 1915+105. (‘Hard’ and ‘soft’ denote the character of the emitted X-rays.) Because the hard states exhibit prominent radio jets3, we argue that the broad emission line arises when the jet illuminates the inner accretion disk. The jet is weak or absent during the soft states4, and we show that the absorption lines originate when the powerful radiation field around the black hole drives a hot wind off the accretion disk5,6,7. Our analysis shows that this wind carries enough mass away from the disk to halt the flow of matter into the radio jet.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The X-ray luminosity and hard flux fraction for the 11 archival HETGS observations of GRS 1915+105.
Figure 2: The data/model ratio for the continuum fits to the HETGS observations of GRS 1915+105.
Figure 3: The equivalent width of the broad Fe xxv emission line in the hard states of GRS 1915+105 as a function of X-ray luminosity and radio flux.
Figure 4: The hard flux fraction and the equivalent width of the Fe xxvi absorption line seen in GRS 1915+105.

References

  1. Mirabel, I. F. & Rodriguez, L. F. Sources of relativistic jets in the Galaxy. Annu. Rev. Astron. Astrophys. 37, 409–443 (1999)

    ADS  Article  Google Scholar 

  2. Fender, R. P. & Belloni, T. GRS 1915+105 and the disc-jet coupling in accreting black hole systems. Annu. Rev. Astron. Astrophys. 42, 317–364 (2004)

    ADS  CAS  Article  Google Scholar 

  3. Klein-Wolt, M. et al. Hard X-ray states and radio emission in GRS 1915+105. Mon. Not. R. Astron. Soc. 331, 745–764 (2002)

    ADS  Article  Google Scholar 

  4. Fender, R. et al. Quenching of the radio jet during the X-ray high state of GX 339–4. Astrophys. J. 519, L165–L168 (1999)

    ADS  Article  Google Scholar 

  5. Begelman, M. C., McKee, C. F. & Shields, G. A. Compton heated winds and coronae above accretion disks. I Dynamics. Astrophys. J. 271, 70–88 (1983)

    ADS  CAS  Article  Google Scholar 

  6. Proga, D. & Kallman, T. R. On the role of the ultraviolet and X-ray radiation in driving a disk wind in X-ray binaries. Astrophys. J. 565, 455–470 (2002)

    ADS  Article  Google Scholar 

  7. Proga, D. Winds from accretion disks driven by radiation and magnetocentrifugal force. Astrophys. J. 538, 684–690 (2000)

    ADS  Article  Google Scholar 

  8. Greiner, J., Cuby, J. G. & McCaughrean, M. J. An unusually massive stellar black hole in the Galaxy. Nature 414, 522–524 (2001)

    ADS  CAS  Article  Google Scholar 

  9. Mirabel, I. F. & Rodriguez, L. F. A superluminal source in the Galaxy. Nature 371, 46–48 (1994)

    ADS  Article  Google Scholar 

  10. Belloni, T., Klein-Wolt, M., Mendez, M., van der Klis, M. & van Paradijs, J. A model-independent analysis of the variability of GRS 1915+105. Astron. Astrophys. 355, 271–290 (2000)

    ADS  Google Scholar 

  11. Hannikainen, D. et al. Characterizing a new class of variability in GRS 1915+105 with simultaneous INTEGRAL/RXTE observations. Astron. Astrophys. 435, 995–1004 (2005)

    ADS  CAS  Article  Google Scholar 

  12. Mirabel, I. F. et al. Accretion instabilities and jet formation in GRS 1915+105. Astron. Astrophys. 330, L9–L12 (1998)

    ADS  Google Scholar 

  13. Eikenberry, S. S., Matthews, K., Morgan, E. H., Remillard, R. & Nelson, R. W. Evidence for a disk-jet interaction in the microquasar GRS 1915+105. Astrophys. J. 494, L61–L64 (1998)

    ADS  Article  Google Scholar 

  14. Fender, R. P., Pooley, G. G., Brocksopp, C. & Newell, S. J. Rapid infrared flares in GRS 1915+105: Evidence for infrared synchrotron emission. Mon. Not. R. Astron. Soc. 290, L65–L69 (1997)

    ADS  Article  Google Scholar 

  15. Pooley, G. G. & Fender, R. P. The variable radio emission from GRS 1915+105. Mon. Not. R. Astron. Soc. 292, 925–933 (1997)

    ADS  Article  Google Scholar 

  16. Canizares, C. et al. The Chandra high-energy transmission grating: Design, fabrication, ground calibration, and 5 years in flight. Publ. Astron. Soc. Pacif. 117, 1144–1171 (2005)

    ADS  Article  Google Scholar 

  17. Dhawan, V., Mirabel, I. F. & Rodriguez, L. F. AU-scale synchrotron jets and superluminal ejecta in GRS 1915+105. Astrophys. J. 543, 373–385 (2000)

    ADS  Article  Google Scholar 

  18. Kallman, T. R. & Bautista, M. Photoionization and high-density gas. Astrophys. J. 133 (Suppl.). 221–253 (2001)

    ADS  CAS  Article  Google Scholar 

  19. Lee, J. C. et al. High-resolution Chandra HETGS and Rossi X-Ray Timing Explorer observations of GRS 1915+105: A hot disk atmosphere and cold gas enriched in iron and silicon. Astrophys. J. 567, 1102–1111 (2002)

    ADS  CAS  Article  Google Scholar 

  20. Muno, M., Morgan, E. H. & Remillard, R. Quasi-periodic oscillations and spectral states in GRS 1915+105. Astrophys. J. 527, 321–340 (1999)

    ADS  Article  Google Scholar 

  21. Kotani, T. et al. ASCA observations of the absorption line features from the superluminal jet source GRS 1915+105. Astrophys. J. 539, 413–423 (2000)

    ADS  CAS  Article  Google Scholar 

  22. Esin, A. A., McClintock, J. E. & Narayan, R. Advection-dominated accretion and the spectral states of black hole X-ray binaries: Application to Nova Muscae 1991. Astrophys. J. 489, 865–889 (1997)

    ADS  Article  Google Scholar 

  23. Markoff, S., Nowak, M. A. & Wilms, J. Going with the flow: Can the base of jets subsume the role of compact accretion disk coronae? Astrophys. J. 635, 1203–1216 (2005)

    ADS  Article  Google Scholar 

  24. Eikenberry, S. et al. Spectroscopy of infrared flares from the microquasar GRS 1915+105. Astrophys. J. 506, L31–L34 (1998)

    ADS  CAS  Article  Google Scholar 

  25. McClintock, J. et al. The spin of the near-extreme Kerr black hole GRS 1915+105. Astrophys. J. 652, 518–539 (2006)

    ADS  CAS  Article  Google Scholar 

  26. Proga, D., Stone, J. M. & Kallman, T. R. Dynamics of line-driven winds in active galactic nuclei. Astrophys. J. 543, 686–696 (2000)

    ADS  Article  Google Scholar 

  27. Janiuk, A., Czerny, B. & Siemiginowska, A. Radiation pressure instability as a variability mechanism in the microquasar GRS 1915+105. Astrophys. J. 542, L33–L36 (2000)

    ADS  Article  Google Scholar 

  28. Houck, J. C. & Denicola, L. A. in Astronomical Data Analysis Software and Systems IX (eds Manset, N., Veillet, C. & Crabtree, D.) 591–594 (ASP Conference Series Vol. 216, 2000)

    Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Harvard University Graduate School of Arts and Sciences (J.N.) and the Faculty of Arts and Sciences (J.C.L.). We thank G. Pooley for providing the radio data used in this paper and we acknowledge conversations with R. Remillard, who provided the Rossi X-ray Timing Explorer spectra, and M. Begelman.

Author Contributions J.N. processed the data, performed spectral analysis, and wrote the paper. J.C.L. commented extensively on the manuscript. Both authors discussed the results at length.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Neilsen.

Supplementary information

Supplementary Figure

This file contains Supplementary Figure 1 with Legend (PDF 121 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Neilsen, J., Lee, J. Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105. Nature 458, 481–484 (2009). https://doi.org/10.1038/nature07680

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07680

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing