Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Changes in the phase of the annual cycle of surface temperature

Abstract

The annual cycle in the Earth’s surface temperature is extremely large—comparable in magnitude to the glacial–interglacial cycles over most of the planet. Trends in the phase and the amplitude of the annual cycle have been observed, but the causes and significance of these changes remain poorly understood—in part because we lack an understanding of the natural variability. Here we show that the phase of the annual cycle of surface temperature over extratropical land shifted towards earlier seasons by 1.7 days between 1954 and 2007; this change is highly anomalous with respect to earlier variations, which we interpret as being indicative of the natural range. Significant changes in the amplitude of the annual cycle are also observed between 1954 and 2007. These shifts in the annual cycles appear to be related, in part, to changes in the northern annular mode of climate variability, although the land phase shift is significantly larger than that predicted by trends in the northern annular mode alone. Few of the climate models presented by the Intergovernmental Panel on Climate Change reproduce the observed decrease in amplitude and none reproduce the shift towards earlier seasons.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Lag and gain fields.
Figure 2: Mean annual cycle and distribution and character of trends.
Figure 3: Modelled and observed mean land trends.

References

  1. Thomson, D. The seasons, global temperature, and precession. Science 268, 59–68 (1995)

    ADS  CAS  Article  Google Scholar 

  2. Mann, M. & Park, J. Greenhouse warming and changes in the seasonal cycle of temperature: Model versus observations. Geophys. Res. Lett. 23, 1111–1114 (1996)

    ADS  CAS  Article  Google Scholar 

  3. Wallace, C. & Osborn, T. Recent and future modulation of the annual cycle. Clim. Res. 22, 1–11 (2002)

    Article  Google Scholar 

  4. Wallace, J., Zhang, Y. & Renwick, J. Dynamic contribution to hemispheric mean temperature trends. Science 270, 780–783 (1995)

    ADS  CAS  Article  Google Scholar 

  5. Balling, R., Michaels, P. & Knappenberger, P. Analysis of winter and summer warming rates in gridded temperature time series. Clim. Res. 9, 175–181 (1998)

    Article  Google Scholar 

  6. Trenberth, K. et al. in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. D. et al.) 235–336 (Cambridge Univ. Press, 2007)

    Google Scholar 

  7. Wunsch, C. The interpretation of short climate records, with comments on the North Atlantic and Southern Oscillations. Bull. Am. Meteorol. Soc. 80, 245–255 (1999)

    ADS  Article  Google Scholar 

  8. Schwartz, M., Ahas, R. & Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Glob. Change Biol. 12, 343–351 (2006)

    ADS  Article  Google Scholar 

  9. Sparks, T. & Menzel, A. Observed changes in seasons: An overview. Int. J. Climatol. 22, 1715–1725 (2002)

    Article  Google Scholar 

  10. Myneni, R., Keeling, C., Tucker, C., Asrar, G. & Nemani, R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997)

    ADS  CAS  Article  Google Scholar 

  11. Magnuson, J. et al. Historical trends in lake and river ice cover in the Northern Hemisphere. Science 289, 1743–1746 (2000)

    ADS  CAS  Article  Google Scholar 

  12. White, G. & Wallace, J. Global distribution of annual and semiannual cycles in surface-temperature. Mon. Weath. Rev. 106, 901–906 (1978)

    ADS  Article  Google Scholar 

  13. Thompson, R. Complex demodulation and the estimation of the changing continentality of Europe climate. Int. J. Climatol. 15, 175–185 (1994)

    Article  Google Scholar 

  14. Hsu, C. & Wallace, J. Global distribution of annual and semiannual cycles in precipitation. Mon. Weath. Rev. 104, 1093–1101 (1976)

    ADS  Article  Google Scholar 

  15. van Loon, H. in Meteorology of the Southern Hemisphere (ed. Newton, C. W.) 25–58 (Meteorological Monographs 35, Am. Meteorol. Soc., 1972)

    Book  Google Scholar 

  16. Eliseev, A., Mokhov, I. & Guseva, M. Sensitivity of amplitude–phase characteristics of the surface air temperature annual cycle to variations in annual mean temperature. Izvestiya. Atmos. Ocean. Phys. 42, 300–312 (2006)

    ADS  Article  Google Scholar 

  17. Prescott, J. & Collins, J. The lag of temperature behind solar radiation. Q. J. R. Meteorol. Soc. 77, 121–126 (1951)

    ADS  Article  Google Scholar 

  18. Brohan, P., Kennedy, J., Harris, I., Tett, S. & Jones, P. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res. 111 10.1029/2005JD006548 (2006)

  19. Jones, P. D., New, M., Parker, D. E., Martin, S. & Rigor, I. G. Surface air temperature and its changes over the past 150 years. Rev. Geophys. 37, 173–199 (1999)

    ADS  Article  Google Scholar 

  20. Ward, R. The classification of climates: I. Bull. Am. Geogr. Soc. 38, 401–412 (1906)

    Article  Google Scholar 

  21. Kendrew, W. Climate of the Continents 5th edn (Oxford Univ. Press, 1961)

    Google Scholar 

  22. Jain, S., Lall, U. & Mann, M. Seasonality and interannual variations of Northern Hemisphere temperature: Equator-to-pole gradient and ocean-land contrast. J. Clim. 12, 1086–1100 (1999)

    ADS  Article  Google Scholar 

  23. Jones, P., Osborn, T. & Briffa, K. Estimating sampling errors in large-scale temperature averages. J. Clim. 10, 2548–2568 (1997)

    ADS  Article  Google Scholar 

  24. Madden, R., Shea, D., Branstator, G., Tribbia, J. & Weber, R. The effects of imperfect spatial and temporal sampling on estimates of the global mean temperature - experiments with model data. J. Clim. 6, 1057–1066 (1993)

    Article  Google Scholar 

  25. Bretherton, C., Widmann, M., Dymnikov, V., Wallace, J. & Blade, I. The effective number of spatial degrees of freedom of a time-varying field. J. Clim. 12, 1990–2009 (1999)

    ADS  Article  Google Scholar 

  26. Parker, D., Jones, P., Folland, C. & Bevan, A. Interdecadal changes of surface-temperature since the late-19th-century. J. Geophys. Res. 99, 14373–14399 (1994)

    ADS  Article  Google Scholar 

  27. Wallace, J., Zhang, Y. & Bajuk, L. Interpretation of interdecadal trends in Northern Hemisphere surface air temperature. J. Clim. 9, 249–259 (1996)

    ADS  Article  Google Scholar 

  28. Wigley, T. M. L. & Jones, P. D. Detecting CO2-induced climate change. Nature 292, 205–208 (1991)

    ADS  Article  Google Scholar 

  29. Schreiber, T. & Schmitz, A. Surrogate time series. Physica D 142, 346–382 (2000)

    ADS  MathSciNet  Article  Google Scholar 

  30. Meehl, G. A. et al. in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. D. et al.) 747–845 (Cambridge Univ. Press, 2007)

    Google Scholar 

  31. Meehl, G. A. et al. The WCRP CMIP3 multimodel dataset - A new era in climate change research. Bull. Am. Meteorol. Soc. 88, 1383–1394 (2007)

    ADS  Article  Google Scholar 

  32. Gates, L. AMIP: The Atmospheric Model Intercomparison Project. Bull. Am. Meteorol. Soc. 73, 1962–1970 (1992)

    ADS  Article  Google Scholar 

  33. Goody, R. M. Principles of Atmospheric Physics and Chemistry Ch. 5 (Oxford Univ. Press, 1995)

    Google Scholar 

  34. Shell, K. & Somerville, R. A generalized energy balance climate model with parameterized dynamics and diabatic heating. J. Clim. 18, 1753–1772 (2005)

    ADS  Article  Google Scholar 

  35. Karl, T., Jones, P. & Knight, R. Testing for bias in the climate record. Science 271, 1879–1880 (1996)

    ADS  CAS  Article  Google Scholar 

  36. Li, H., Robock, A. & Wild, M. Evaluation of Intergovernmental Panel on Climate Change Fourth Assessment soil moisture simulations for the second half of the twentieth century. J. Geophys. Res. 112 10.1029/2006JD007455 (2007)

  37. Robock, A. et al. The global soil moisture data bank. Bull. Am. Meteorol. Soc. 81, 1281–1299 (2000)

    ADS  Article  Google Scholar 

  38. Vinnikov, K. & Yeserkepova, I. Soil-moisture - empirical-data and model results. J. Clim. 4, 66–79 (1991)

    ADS  Article  Google Scholar 

  39. Dai, A., Trenberth, K. & Qian, T. A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 5, 1117–1130 (2004)

    ADS  Article  Google Scholar 

  40. Wild, M. et al. From dimming to brightening: Decadal changes in solar radiation at Earth’s surface. Science 308, 847–850 (2005)

    ADS  CAS  Article  Google Scholar 

  41. Liepert, B. Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. Geophys. Res. Lett. 29 10.1029/2002GL014910 (2002)

    Article  Google Scholar 

  42. Stanhill, G., Trenberth, K. & Cohen, S. A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric. For. Meteorol. 107, 255–278 (2001)

    ADS  Article  Google Scholar 

  43. Cohen, J. & Entekhabi, D. Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett. 26, 345–348 (1999)

    ADS  Article  Google Scholar 

  44. Yeh, T.-C., Wetherald, R. T. & Manabe, S. The effect of soil moisture on the short-term climate and hydrology change—a numerical experiment. Mon. Weath. Rev. 112, 474–490 (1984)

    ADS  Article  Google Scholar 

  45. Lohmann, U. & Feichter, J. Global indirect aerosol effects: a review. Atmos. Chem. Phys. 5, 715–737 (2005)

    ADS  CAS  Article  Google Scholar 

  46. Quadrelli, R. & Wallace, J. A simplified linear framework for interpreting patterns of Northern Hemisphere wintertime climate variability. J. Clim. 17, 3728–3744 (2004)

    ADS  Article  Google Scholar 

  47. Saito, K. & Cohen, J. The potential role of snow cover in forcing interannual variability of the major Northern Hemisphere mode. Geophys. Res. Lett. 30 10.1029/2002GL016341 (2003)

  48. Kara, A., Rochford, P. & Hurlburt, H. Mixed layer depth variability over the global ocean. J. Geophys. Res. 108 10.1029/2000JC000736 (2003)

  49. Cohen, J., Frei, A. & Rosen, R. The role of boundary conditions in AMIP-2 simulations of the NAO. J. Clim. 18, 973–981 (2005)

    ADS  Article  Google Scholar 

  50. Randall, D. et al. in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. D. et al.) 589–662 (Cambridge Univ. Press, 2007)

    Google Scholar 

  51. Cuming, M. J. & Hawkins, B. A. TERDAT: The FNOC System for Terrain Data Extraction and Processing. Tech. Rep. Mil Project M-254 (second edition); prepared for USN/FNOC (Meteorology International, 1981)

    Google Scholar 

Download references

Acknowledgements

We thank M. Tingley, A. Swann and L. Morgan for comments that improved the manuscript. A.R.S. was funded in part by a Chancellor’s Fellowship from the University of California. P.H. was funded in part by US National Science Foundation award 0645936. I.Y.F. acknowledges support from US National Science Foundation award 0628278. We acknowledge the Program for Climate Model Diagnosis and Intercomparison and the WCRP’s Working Group on Coupled Modelling for their roles in making available the WCRP Coupled Model Intercomparison Project Phase 3 multi-model simulations. Support for these simulations is provided by the Office of Science, US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Stine.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary Methods, Supplementary References, Supplementary Table S1 and Supplementary Figures S1-S8 with Legends (PDF 5358 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stine, A., Huybers, P. & Fung, I. Changes in the phase of the annual cycle of surface temperature. Nature 457, 435–440 (2009). https://doi.org/10.1038/nature07675

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07675

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing