Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fossil steroids record the appearance of Demospongiae during the Cryogenian period

Abstract

The Neoproterozoic era (1,000–542 Myr ago) was an era of climatic extremes and biological evolutionary developments culminating in the emergence of animals (Metazoa) and new ecosystems1. Here we show that abundant sedimentary 24-isopropylcholestanes, the hydrocarbon remains of C30 sterols produced by marine demosponges, record the presence of Metazoa in the geological record before the end of the Marinoan glaciation (635 Myr ago). These sterane biomarkers are abundant in all formations of the Huqf Supergroup, South Oman Salt Basin, and, based on a new high-precision geochronology2, constitute a continuous 100-Myr-long chemical fossil record of demosponges through the terminal Neoproterozoic and into the Early Cambrian epoch. The demosponge steranes occur in strata that underlie the Marinoan cap carbonate (>635 Myr ago). They currently represent the oldest evidence for animals in the fossil record, and are evidence for animals pre-dating the termination of the Marinoan glaciation. This suggests that shallow shelf waters in some late Cryogenian ocean basins (>635 Myr ago) contained dissolved oxygen in concentrations sufficient to support basal metazoan life at least 100 Myr before the rapid diversification of bilaterians during the Cambrian explosion. Biomarker analysis has yet to reveal any convincing evidence for ancient sponges pre-dating the first globally extensive Neoproterozoic glacial episode (the Sturtian, 713 Myr ago in Oman2).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stratigraphic column of Huqf Supergroup with representative lithology, biostratigraphy and geochronological constraints.
Figure 2: MRM GC-MS ion chromatograms of C 26 –C 30 desmethylsteranes released from catalytic hydropyrolysis of a Masirah Bay Formation (JF-1) and a Ghadir Manquil Formation (GM-1) kerogen.

Similar content being viewed by others

References

  1. Peterson, K. J., Cotton, J. A., Gehling, J. G. & Pisani, D. The Ediacaran emergence of bilaterians: Congruence between the genetic and the geological fossil records. Phil. Trans. R. Soc. B 363, 1435–1443 (2008)

    Article  Google Scholar 

  2. Bowring, S. A. et al. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. Am. J. Sci. 307, 1097–1145 (2007)

    Article  ADS  CAS  Google Scholar 

  3. Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. Oxidation of the Ediacaran ocean. Nature 444, 744–747 (2006)

    Article  ADS  CAS  Google Scholar 

  4. McCarron, G. The Sedimentology and Chemostratigraphy of the Nafun Group, Huqf Supergroup, Oman. Thesis, Univ. Oxford (2000)

    Google Scholar 

  5. Grantham, P. J., Lijmbach, J., Posthuma, J., Hughes Clarke, M. W. & Willink, R. J. Origin of crude oils in Oman. J. Petrol. Geol. 11, 61–80 (1988)

    Article  ADS  CAS  Google Scholar 

  6. Höld, I. M., Schouten, S., Jellema, J. & Sinninghe Damste, J. S. Origin of free and bound mid-chain methyl alkanes in oils, bitumens and kerogens of the marine, Infracambrian Huqf Formation (Oman). Org. Geochem. 30, 1411–1428 (1999)

    Article  Google Scholar 

  7. Love, G. D., Snape, C. E., Carr, A. D. & Houghton, R. C. Release of covalently-bound biomarkers in high yields from kerogen via catalytic hydropyrolysis. Org. Geochem. 23, 981–986 (1995)

    Article  CAS  Google Scholar 

  8. Murray, I. P., Love, G. D., Snape, C. E. & Bailey, N. J. L. Comparison of covalently-bound aliphatic biomarkers released via hydropyrolysis with their solvent-extractable counterparts for a suite of Kimmeridge clays. Org. Geochem. 29, 1487–1505 (1998)

    Article  CAS  Google Scholar 

  9. Brocks, J. J. et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437, 866–870 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Summons, R. E., Jahnke, L. L., Hope, J. M. & Logan, G. A. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554–556 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Volkman, J. K. Sterols in microorganisms. Appl. Microbiol. Biotechnol. 60, 495–506 (2003)

    Article  CAS  Google Scholar 

  12. Moldowan, J. M. et al. Sedimentary 24-n-propylcholestanes, molecular fossils diagnostic of marine algae. Science 247, 309–312 (1990)

    Article  ADS  CAS  Google Scholar 

  13. Bergquist, P. R., Hofheinz, W. & Oesterhelt, G. Sterol composition and classification of the Demospongiae. Biochem. Syst. Ecol. 8, 423–435 (1980)

    Article  CAS  Google Scholar 

  14. Silva, C. J., Wunsche, L. & Djerassi, C. Biosynthetic studies of marine lipids 35. The demonstration of de novo sterol biosynthesis in sponges using radiolabelled isoprenoid precursors. Comp. Biochem. Physiol. B 99, 763–773 (1991)

    Article  CAS  Google Scholar 

  15. McCaffrey, M. A. et al. Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic age petroleum and bitumen. Geochim. Cosmochim. Acta 58, 529–532 (1994)

    Article  ADS  CAS  Google Scholar 

  16. Kodner, R. B., Summons, R. E., Pearson, A., King, N. & Knoll, A. H. Sterols in a unicellular relative of the metazoans. Proc. Natl Acad. Sci. USA 105, 9897–9902 (2008)

    Article  ADS  CAS  Google Scholar 

  17. Narbonne, G. M. & Gehling, J. G. Life after snowball: The oldest complex Ediacaran fossils. Geology 31, 27–30 (2003)

    Article  ADS  Google Scholar 

  18. Droser, M. L., Jensen, S. & Gehling, J. G. Trace fossils and substrates of the terminal Proterozoic-Cambrian transition: Implications for the record of early bilaterians and sediment mixing. Proc. Natl Acad. Sci. USA 99, 12572–12576 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Yin, L. et al. Doushantuo embryos preserved inside diapause egg cysts. Nature 446, 661–663 (2007)

    Article  ADS  CAS  Google Scholar 

  20. Gehling, J. G. & Rigby, J. K. Long expected sponges from the Neoproterozoic Ediacaran fauna of South Australia. J. Paleontol. 70, 185–195 (1996)

    Article  Google Scholar 

  21. Brasier, M., Green, O. & Shields, G. Ediacarian sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna. Geology 25, 303–306 (1997)

    Article  ADS  CAS  Google Scholar 

  22. Li, C. W., Chen, J. Y. & Hua, T. E. Precambrian sponges with cellular structures. Science 279, 879–882 (1998)

    Article  ADS  CAS  Google Scholar 

  23. Xiao, S., Zhang, Y. & Knoll, A. H. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391, 553–558 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Sperling, E. A., Peterson, K. J. & Pisani, D. in The Rise and Fall of the Ediacaran Biota (eds Vickers-Rich, P. & Komarower, P.) 355–368 (Geological Society Special Publications, 2007)

    Google Scholar 

  25. Peterson, K. J. et al. Estimating metazoan divergence times with a molecular clock. Proc. Natl Acad. Sci. USA 101, 6536–6541 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Peterson, K. J. & Butterfield, N. J. Origin of the Eumetazoa: Testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proc. Natl Acad. Sci. USA 102, 9547–9552 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Thiel, V. et al. A chemical view of the most ancient metazoa – biomarker chemotaxonomy of hexactinellid sponges. Naturwissenschaften 89, 60–66 (2002)

    Article  ADS  CAS  Google Scholar 

  28. Bergquist, P. R., Karuso, P., Cambie, R. C. & Smith, D. J. Sterol composition and classification of the Porifera. Biochem. Syst. Ecol. 19, 17–24 (1991)

    Article  CAS  Google Scholar 

  29. Rothman, D. H., Hayes, J. M. & Summons, R. E. Dynamics of the Neoproterozoic carbon cycle. Proc. Natl Acad. Sci. USA 100, 8124–8129 (2003)

    Article  ADS  CAS  Google Scholar 

  30. McFadden, K. A. et al. Pulsed oxidation and biological evolution in the Ediacaran ocean. Proc. Natl Acad. Sci. USA 105, 3197–3202 (2008)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Funding support for this work came from Petroleum Development Oman (PDO), the NASA Exobiology Program, the NSF EAR Program, the Agouron Institute and the NASA Astrobiology Institute. We thank PDO for access to sample materials and Z. Rawahi and P. Taylor, in particular, for their input. C. Colonero, R. Kayser and A. Lewis provided laboratory assistance, including the maintenance of mass spectrometers at MIT.

Author Contributions G.D.L. interpreted the data and wrote the manuscript with input from R.E.S, D.A.F, A.S.B and E.G. G.D.L., E.G., C.S. and A.E.K. acquired the Huqf biomarker data working in the research group of R.E.S. A.S.B. and M.B. screened extant demosponges for their sterol contents. C.E.S. and W.M. made facilities available for HyPy experiments on kerogens and trained C.S. to use the equipment. J.P.G. provided a robust stratigraphic framework for the Huqf Supergroup in the SOSB and with D.A.F. identified key sedimentary rock samples to use in this investigation. S.A.B and D.J.C. measured important U–Pb ages for ash beds and detritral zircons through the stratigraphy to constrain the age range and distribution of our demosponge biomarkers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon D. Love.

Supplementary information

Supplementary Information

This file contains Supplementary Data, Supplementary Figure 1 with Legend, Supplementary Tables 1-4, Supplementary Results, a Supplementary Discussion and Supplementary References (PDF 1699 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Love, G., Grosjean, E., Stalvies, C. et al. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457, 718–721 (2009). https://doi.org/10.1038/nature07673

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07673

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing