A single regulatory gene is sufficient to alter bacterial host range


Microbial symbioses are essential for the normal development and growth of animals1,2,3. Often, symbionts must be acquired from the environment during each generation, and identification of the relevant symbiotic partner against a myriad of unwanted relationships is a formidable task4. Although examples of this specificity are well-documented, the genetic mechanisms governing it are poorly characterized5. Here we show that the two-component sensor kinase RscS is necessary and sufficient for conferring efficient colonization of Euprymna scolopes squid by bioluminescent Vibrio fischeri from the North Pacific Ocean. In the squid symbiont V. fischeri ES114, RscS controls light-organ colonization by inducing the Syp exopolysaccharide, a mediator of biofilm formation during initial infection. A genome-level comparison revealed that rscS, although present in squid symbionts, is absent from the fish symbiont V. fischeri MJ11. We found that heterologous expression of RscS in strain MJ11 conferred the ability to colonize E. scolopes in a manner comparable to that of natural squid isolates. Furthermore, phylogenetic analyses support an important role for rscS in the evolution of the squid symbiosis. Our results demonstrate that a regulatory gene can alter the host range of animal-associated bacteria. We show that, by encoding a regulator and not an effector that interacts directly with the host, a single gene can contribute to the evolution of host specificity by switching ‘on’ pre-existing capabilities for interaction with animal tissue.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: rscS is sufficient to confer efficient colonization of E. scolopes.
Figure 2: The presence of rscS is correlated to a natural association with squid and to the ability to colonize E. scolopes experimentally.
Figure 3: rscS entered the V. fischeri lineage before colonization of squid in the North Pacific Ocean.
Figure 4: Reconstruction of the evolution of V. fischeri symbioses in the North Pacific Ocean.

Accession codes

Primary accessions


Data deposits

The recA, mdh, katA and rscS sequence data from the additional strains described in the article are deposited in GenBank under accession numbers EU907941EU908017; MJ11 genome data are deposited under accession numbers CP001133, CP001134 and CP001139.


  1. 1

    Aas, J. A., Paster, B. J., Stokes, L. N., Olsen, I. & Dewhirst, F. E. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43, 5721–5732 (2005)

    Article  Google Scholar 

  2. 2

    Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Moran, N. A. Symbiosis as an adaptive process and source of phenotypic complexity. Proc. Natl Acad. Sci. USA 104 (suppl. 1). 8627–8633 (2007)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Groisman, E. A. & Casadesús, J. The origin and evolution of human pathogens. Mol. Microbiol. 56, 1–7 (2005)

    CAS  Article  Google Scholar 

  6. 6

    Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959 (2005)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Xu, J. & Gordon, J. I. Honor thy symbionts. Proc. Natl Acad. Sci. USA 100, 10452–10459 (2003)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Brinig, M. M., Register, K. B., Ackermann, M. R. & Relman, D. A. Genomic features of Bordetella parapertussis clades with distinct host species specificity. Genome Biol. 7, R81 (2006)

    Article  Google Scholar 

  9. 9

    Edwards, R. A., Olsen, G. J. & Maloy, S. R. Comparative genomics of closely related salmonellae. Trends Microbiol. 10, 94–99 (2002)

    CAS  Article  Google Scholar 

  10. 10

    Rajashekara, G., Glasner, J. D., Glover, D. A. & Splitter, G. A. Comparative whole-genome hybridization reveals genomic islands in Brucella species. J. Bacteriol. 186, 5040–5051 (2004)

    CAS  Article  Google Scholar 

  11. 11

    Ruby, E. G. & Nealson, K. H. Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica; a model of symbiosis based on bacterial studies. Biol. Bull. 151, 574–586 (1976)

    CAS  Article  Google Scholar 

  12. 12

    Mandel, M. J., Stabb, E. V. & Ruby, E. G. Comparative genomics-based investigation of resequencing targets in Vibrio fischeri: focus on point miscalls and artefactual expansions. BMC Genomics 9, 138 (2008)

    Article  Google Scholar 

  13. 13

    Ruby, E. G. et al. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Natl Acad. Sci. USA 102, 3004–3009 (2005)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Visick, K. L. & Skoufos, L. M. Two-component sensor required for normal symbiotic colonization of Euprymna scolopes by Vibrio fischeri. J. Bacteriol. 183, 835–842 (2001)

    CAS  Article  Google Scholar 

  15. 15

    Yip, E. S., Geszvain, K., DeLoney-Marino, C. R. & Visick, K. L. The symbiosis regulator rscS controls the syp gene locus, biofilm formation and symbiotic aggregation by Vibrio fischeri. Mol. Microbiol. 62, 1586–1600 (2006)

    CAS  Article  Google Scholar 

  16. 16

    Hussa, E. A., Darnell, C. L. & Visick, K. L. RscS functions upstream of SypG to control the syp locus and biofilm formation in Vibrio fischeri. J. Bacteriol. 190, 4576–4583 (2008)

    CAS  Article  Google Scholar 

  17. 17

    Yip, E. S., Grublesky, B. T., Hussa, E. A. & Visick, K. L. A novel, conserved cluster of genes promotes symbiotic colonization and σ54-dependent biofilm formation by Vibrio fischeri. Mol. Microbiol. 57, 1485–1498 (2005)

    CAS  Article  Google Scholar 

  18. 18

    Geszvain, K. & Visick, K. L. Multiple factors contribute to keeping levels of the symbiosis regulator RscS low. FEMS Microbiol. Lett. 285, 33–39 (2008)

    CAS  Article  Google Scholar 

  19. 19

    Stabb, E. V., Schaefer, A., Bose, J. L. & Ruby, E. G. in Chemical Communication among Bacteria (eds Winans, S. C. & Bassler, B. L.) 233–250 (ASM Press, 2008)

    Google Scholar 

  20. 20

    Bose, J. L., Rosenberg, C. S. & Stabb, E. V. Effects of luxCDABEG induction in Vibrio fischeri: enhancement of symbiotic colonization and conditional attenuation of growth in culture. Arch. Microbiol. 190, 169–183 (2008)

    CAS  Article  Google Scholar 

  21. 21

    Visick, K. L., Foster, J., Doino, J., McFall-Ngai, M. & Ruby, E. G. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182, 4578–4586 (2000)

    CAS  Article  Google Scholar 

  22. 22

    Haygood, M. G. Light organ symbioses in fishes. Crit. Rev. Microbiol. 19, 191–216 (1993)

    CAS  Article  Google Scholar 

  23. 23

    Hacker, J. & Kaper, J. B. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54, 641–679 (2000)

    CAS  Article  Google Scholar 

  24. 24

    Long, S. R. Genes and signals in the rhizobium–legume symbiosis. Plant Physiol. 125, 69–72 (2001)

    CAS  Article  Google Scholar 

  25. 25

    Cowles, C. E. & Goodrich-Blair, H. The Xenorhabdus nematophila nilABC genes confer the ability of Xenorhabdus spp. to colonize Steinernema carpocapsae nematodes. J. Bacteriol. 190, 4121–4128 (2008)

    CAS  Article  Google Scholar 

  26. 26

    Foster, J. S., Von Boletzky, S. & McFall-Ngai, M. J. A comparison of the light organ development of Sepiola robusta Naef and Euprymna scolopes Berry (Cephalopoda: Sepiolidae). Bull. Mar. Sci. 70, 141–153 (2002)

    Google Scholar 

  27. 27

    Darling, A. C., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394–1403 (2004)

    CAS  Article  Google Scholar 

  28. 28

    Stabb, E. V. & Ruby, E. G. RP4-based plasmids for conjugation between Escherichia coli and members of the Vibrionaceae. Methods Enzymol. 358, 413–426 (2002)

    CAS  Article  Google Scholar 

  29. 29

    Stabb, E. V. et al. in Recent Advances in Marine Science and Technology 2000 (ed. Saxena, N.) 269–277 (PACON International, 2001)

    Google Scholar 

  30. 30

    Silhavy, T. J., Berman, M. L. & Enquist, L. W. Experiments with Gene Fusions (Cold Spring Harbor Laboratory Press, 1984)

    Google Scholar 

  31. 31

    Hussa, E. A., O’Shea, T. M., Darnell, C. L., Ruby, E. G. & Visick, K. L. Two-component response regulators of Vibrio fischeri: identification, mutagenesis, and characterization. J. Bacteriol. 189, 5825–5838 (2007)

    CAS  Article  Google Scholar 

  32. 32

    van Hijum, S. A., Zomer, A. L., Kuipers, O. P. & Kok, J. Projector 2: contig mapping for efficient gap-closure of prokaryotic genome sequence assemblies. Nucleic Acids Res. 33, W560–W566 (2005)

    CAS  Article  Google Scholar 

  33. 33

    Untergasser, A. et al. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35, W71–W74 (2007)

    Article  Google Scholar 

  34. 34

    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    CAS  Article  Google Scholar 

  35. 35

    Ruby, E. G. & Nealson, K. H. Pyruvate production and excretion by the luminous marine bacteria. Appl. Environ. Microbiol. 34, 164–169 (1977)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997)

    CAS  Article  Google Scholar 

  37. 37

    Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599 (2007)

    CAS  Article  Google Scholar 

  38. 38

    Swofford, D. L. PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods) 4th edn (Sinauer, 2003)

    Google Scholar 

  39. 39

    Posada, D. & Crandall, K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818 (1998)

    CAS  Article  Google Scholar 

  40. 40

    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003)

    CAS  Article  Google Scholar 

  41. 41

    Zwickl, D. J. Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence Datasets under the Maximum Likelihood Criterion. PhD. thesis, Univ. Texas at Austin (2006)

    Google Scholar 

  42. 42

    Karlin, S. & Mrázek, J. Predicted highly expressed genes of diverse prokaryotic genomes. J. Bacteriol. 182, 5238–5250 (2000)

    CAS  Article  Google Scholar 

  43. 43

    Finn, R. D. et al. Pfam: clans, web tools and services. Nucleic Acids Res. 34, D247–D251 (2006)

    CAS  Article  Google Scholar 

  44. 44

    Kall, L., Krogh, A. & Sonnhammer, E. L. Advantages of combined transmembrane topology and signal peptide prediction – the Phobius web server. Nucleic Acids Res. 35, W429–W432 (2007)

    Article  Google Scholar 

  45. 45

    Page, R. D. TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357–358 (1996)

    CAS  Google Scholar 

Download references


We thank: P. Dunlap for sharing bacterial strains; N. Perna, J. Glasner, K. Geszvain, D. Baum, J. Johnson, M. Sarmiento and S. Ferriera for technical assistance; A. Wier, N. Bekiares, R. Gates and the Hawaii Institute of Marine Biology for animal facilities and care; J. McCosker and the Steinhart Aquarium for access to fish specimens; M. McFall-Ngai, H. Goodrich-Blair, C. Brennan and J. Troll for discussions; and L. Proctor for project support. MJ11 genome sequencing was funded by the Gordon and Betty Moore Foundation Marine Microbial Genome Sequencing Project; E.G.R. and co-workers are funded by the National Institutes of Health–National Center for Research Resources and the National Science Foundation Division of Integrative Organismal Systems; E.V.S. is funded by a National Science Foundation CAREER Award; K.L.V. is funded by the National Institute of General Medical Sciences; M.J.M. is funded by a National Institute of General Medical Sciences National Research Service Award Postdoctoral Fellowship; M.S.W. is funded by a National Science Foundation Predoctoral Fellowship and a National Institutes of Health Molecular Biosciences Training Grant to the University of Wisconsin.

Author Contributions M.J.M. designed the experiments, performed all work not described below, and wrote the paper. M.S.W. conducted the phylogenetic studies. K.L.V. constructed plasmids and strains, and imaged biofilm phenotypes. M.J.M. planned and performed the genome assembly and analytics, and M.J.M., E.V.S. and E.G.R. analysed the bioinformatics results.

Author information



Corresponding author

Correspondence to Mark J. Mandel.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-4 with Legends, Supplementary Tables 1-3, Supplementary Notes and Supplementary References (PDF 1014 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mandel, M., Wollenberg, M., Stabb, E. et al. A single regulatory gene is sufficient to alter bacterial host range. Nature 458, 215–218 (2009). https://doi.org/10.1038/nature07660

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing