Abstract
Mechanisms for the formation of crust on planetary bodies remain poorly understood1. It is generally accepted that Earth’s andesitic continental crust is the product of plate tectonics1,2, whereas the Moon acquired its feldspar-rich crust by way of plagioclase flotation in a magma ocean3,4. Basaltic meteorites provide evidence that, like the terrestrial planets, some asteroids generated crust and underwent large-scale differentiation processes5. Until now, however, no evolved felsic asteroidal crust has been sampled or observed. Here we report age and compositional data for the newly discovered, paired and differentiated meteorites Graves Nunatak (GRA) 06128 and GRA 06129. These meteorites are feldspar-rich, with andesite bulk compositions. Their age of 4.52 ± 0.06 Gyr demonstrates formation early in Solar System history. The isotopic and elemental compositions, degree of metamorphic re-equilibration and sulphide-rich nature of the meteorites are most consistent with an origin as partial melts from a volatile-rich, oxidized asteroid. GRA 06128 and 06129 are the result of a newly recognized style of evolved crust formation, bearing witness to incomplete differentiation of their parent asteroid and to previously unrecognized diversity of early-formed materials in the Solar System.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Formation of ferroan dacite by lunar silicic volcanism recorded in a meteorite from the Moon
Progress in Earth and Planetary Science Open Access 02 March 2020
-
Silica-rich volcanism in the early solar system dated at 4.565 Ga
Nature Communications Open Access 02 August 2018
-
Cosmochemical fractionation by collisional erosion during the Earth’s accretion
Nature Communications Open Access 23 September 2015
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Rudnick, R. L. & Gao, S. in The Crust (ed. Rudnick, R. L.) Vol. 3, Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) 1–64 (Elsevier-Pergamon, 2003)
Campbell, I. H. & Taylor, S. R. No water, no granites — no oceans, no continents. Geophys. Res. Lett. 10, 1061–1064 (1985)
Wood, J. A., Dickey, J. S., Marvin, U. B. & Powell, B. N. Lunar anorthosites and a geophysical model of the Moon. Proc. Apollo 11 Lunar Sci. Conf. 965–988 (1970)
Smith, J. A. et al. Petrologic history of the Moon inferred from petrography, mineralogy, and petrogenesis of Apollo 11 rocks. Proc. Apollo 11 Lunar Sci. Conf. 1149–1162 (1970)
Greenwood, R. C., Franchi, I. A., Jambon, A. & Buchanan, P. C. Widespread magma oceans on asteroidal bodies in the early Solar System. Nature 435, 916–918 (2005)
Bowring, S. A. & Williams, I. S. Priscoan (4.00 – 4.03 Ga) orthogneiss from northwestern Canada. Contrib. Mineral. Petrol. 134, 3–16 (1999)
Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001)
Carlson, R. W. & Lugmair, G. The age of ferroan anorthosite 60025: Oldest crust on a young Moon? Earth Planet. Sci. Lett. 90, 119–130 (1988)
Ash, R. D., Knott, S. F. & Turner, G. A 4-Gyr shock age for a martian meteorite and implications for the cratering history of Mars. Nature 380, 57–59 (1996)
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. in Planetary Materials (ed. Papike, J. J.) Ch. 4 (Mineralogical Society of America, 1998)
Shearer, C. K. et al. GRA 06129: A meteorite from a new asteroidal geochemical reservoir or Venus? Lunar Planet. Sci. Conf. Abstr. XXXIX, 1825 (2008)
Mikouchi, T. & Miyamoto, M. Mineralogy and pyroxene cooling rate of unique achondrite meteorite GRA 06129. Lunar Planet. Sci. Conf. Abstr. XXXIX, 2297 (2008)
Clayton, R. N. Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115–149 (1993)
Cherniak, D. J., Landord, W. A. & Ryerson, F. J. Lead diffusion in apatite and zircon using ion implantation and Rutherford back-scattering techniques. Geochim. Cosmochim. Acta 55, 1663–1673 (1991)
Amelin, Y., Krot, A. N., Hutcheon, I. D. & Ulyanov, A. A. Lead isotopic ages of chondrules and calcium-aluminium-rich inclusions. Science 297, 1678–1683 (2002)
Strom, R. G., Schaber, G. G. & Dawson, D. D. The global resurfacing of Venus. J. Geophys. Res. 99 (E5). 10899–10926 (1994)
Taylor, G. J. & Scott, E. R. D. in Meteorites, Comets, and Planets (ed. Davis, A. M.) Vol. 1, Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) 477–486 (Elsevier-Pergamon, 2003)
Taylor, G. J. Core formation in asteroids. J. Geophys. Res. 97, 717–726 (1992)
Day, J. M. D., Pearson, D. G. & Taylor, L. A. Highly siderophile element constraints on accretion and differentiation of the Earth-Moon system. Science 315, 217–219 (2007)
Birck, J.-L. & Allègre, C. J. Contrasting Re/Os magmatic fractionation in planetary basalts. Earth Planet. Sci. Lett. 124, 139–148 (1994)
Jurewicz, A. J. G., Mittlefehldt, D. W. & Jones, J. H. Experimental partial melting of the Allende (CV) and Murchison (CM) chondrites and the origin of asteroidal basalt. Geochim. Cosmochim. Acta 57, 2123–2139 (1995)
Morse, S. A. Basalts and Phase Diagrams (Springer, 1980)
Tuttle, O. F. & Bowen, N. L. Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol. Soc. Am. Mem. 74, 153p (1958)
Kushiro, I. On the nature of silicate melt and its significance in magma genesis; regularities in the shift of the liquidus boundaries involving olivine, pyroxene, and silica minerals. Am. J. Sci. 275, 411–431 (1975)
Ziegler, R. A. et al. Petrology, geochemistry and likely provenance of unique achondrite Graves Nunatak 06128. Lunar Planet. Sci. Conf. Abstr. XXXIX, 2456 (2008)
Mittlefehldt, D. W., Bogard, D. D., Berkley, J. L. & Garrison, D. H. Brachinites: Igneous rocks from a differentiated asteroid. Meteorit. Planet. Sci. 38, 1601–1625 (2003)
Rumble, D., Irving, A. J., Bunch, T. E., Wittke, J. H. & Kuehner, S. M. Oxygen isotopic and petrological diversity among Brachinites NWA 4872, NWA 4874, NWA 4882 and NWA 4969: How many ancient parent bodies? Lunar Planet. Sci. Conf. Abstr. XXXIX, 1974 (2008)
Bockrath, C., Ballhaus, C. & Holzheid, A. Fractionation of the platinum-group elements during mantle melting. Science 305, 1951–1953 (2004)
Keil, K., Stöffler, D., Love, S. G. & Scott, E. R. D. Constraints on the role of impact heating and melting in asteroids. Meteorit. Planet. Sci. 32, 349–363 (1997)
Wilson, L. & Keil, K. Consequences of explosive eruptions on small solar system bodies: The case of the missing basalts on the aubrite parent body. Earth Planet. Sci. Lett. 140, 191–200 (1991)
Clark, B.-E. et al. E-type asteroid spectroscopy and compositional modelling. J. Geophys. Res. 109 10.1029/2003JE002200 (2004)
Spicuzza, M. J., Day, J. M. D., Taylor, L. A. & Valley, J. W. Oxygen isotope constraints on the origin and differentiation of the Moon. Earth Planet. Sci. Lett. 253, 254–265 (2007)
Horan, M. F., Walker, R. J., Morgan, J. W., Grossman, J. N. & Rubin, A. E. Highly siderophile elements in chondrites. Chem. Geol. 196, 27–42 (2003)
Day, J. M. D. et al. Comparative petrology, geochemistry, and petrogenesis of evolved, low-Ti mare basalt meteorites from the LaPaz Icefield, Antarctica. Geochim. Cosmochim. Acta 70, 1581–1600 (2006)
Baker, J., Peate, D., Waight, T. & Meyzen, C. Pb isotopic analysis of standards and samples using a 207Pb-204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chem. Geol. 211, 275–303 (2004)
Ludwig, K. R. Isoplot. Program and documentation, version 2.95. (Revised edition of US Open-File report, 91-445, 2003)
Rumble, D., Miller, M. F., Franchi, I. A. & Greenwood, R. C. Oxygen three-isotope fractionation lines in terrestrial silicate minerals: An inter-laboratory comparison of hydrothermal quartz and eclogitic garnet. Geochim. Cosmochim. Acta 71, 3592–3600 (2007)
Clayton, R. N. & Mayeda, T. K. Oxygen isotope studies of achondrites. Geochim. Cosmochim. Acta 60, 1999–2017 (1996)
Miller, M. F. Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance. Geochim. Cosmochim. Acta 66, 1881–1889 (2002)
Sharp, Z. D. A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim. Cosmochim. Acta 54, 1353–1357 (1990)
Acknowledgements
We thank the ANSMET 2006/2007 field team, the Meteorite Working Group and the Smithsonian Institution of Washington for collection and provision of the GRA 06128/9 and Brachina meteorites. D. Mittlefehldt and R. Greenwood provided reviews that improved the quality of this paper. A. Patchen and P. Piccoli provided assistance with electron microprobe analysis. Portions of this study were supported by the NASA Cosmochemistry Program: NNX07AM29G (R.J.W.), NNX08AH76G (W.F.M.), NNG05GG03G (L.A.T.).
Author Contributions All authors participated in data collection and interpretation and commented on the manuscript. J.M.D.D led the project and wrote the paper.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Information
This file contains Supplementary Methods, a Supplementary Discussion, Supplementary References and Supplementary Figures S1-S5 with Legends (PDF 2437 kb)
Supplementary Table 1
This file contains Supplementary Table 1 (XLS 16 kb)
Supplementary Table 2
This file contains Supplementary Table 2 (XLS 18 kb)
Supplementary Table 3
This file contains Supplementary Table 3 (XLS 16 kb)
Supplementary Table 4
This file contains Supplementary Table 4 (XLS 29 kb)
Rights and permissions
About this article
Cite this article
Day, J., Ash, R., Liu, Y. et al. Early formation of evolved asteroidal crust. Nature 457, 179–182 (2009). https://doi.org/10.1038/nature07651
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature07651
This article is cited by
-
Early silicic magmatism on a differentiated asteroid
Nature Geoscience (2022)
-
Formation of ferroan dacite by lunar silicic volcanism recorded in a meteorite from the Moon
Progress in Earth and Planetary Science (2020)
-
Silica-rich volcanism in the early solar system dated at 4.565 Ga
Nature Communications (2018)
-
Cosmochemical fractionation by collisional erosion during the Earth’s accretion
Nature Communications (2015)
-
Our choice from the recent literature
Nature Geoscience (2009)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.