Early formation of evolved asteroidal crust


Mechanisms for the formation of crust on planetary bodies remain poorly understood1. It is generally accepted that Earth’s andesitic continental crust is the product of plate tectonics1,2, whereas the Moon acquired its feldspar-rich crust by way of plagioclase flotation in a magma ocean3,4. Basaltic meteorites provide evidence that, like the terrestrial planets, some asteroids generated crust and underwent large-scale differentiation processes5. Until now, however, no evolved felsic asteroidal crust has been sampled or observed. Here we report age and compositional data for the newly discovered, paired and differentiated meteorites Graves Nunatak (GRA) 06128 and GRA 06129. These meteorites are feldspar-rich, with andesite bulk compositions. Their age of 4.52 ± 0.06 Gyr demonstrates formation early in Solar System history. The isotopic and elemental compositions, degree of metamorphic re-equilibration and sulphide-rich nature of the meteorites are most consistent with an origin as partial melts from a volatile-rich, oxidized asteroid. GRA 06128 and 06129 are the result of a newly recognized style of evolved crust formation, bearing witness to incomplete differentiation of their parent asteroid and to previously unrecognized diversity of early-formed materials in the Solar System.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Bulk composition of the GRA 06128/9 achondrite meteorites.
Figure 2: δ 18 O–Δ 17 O plot for GRA 06128/9 versus achondrite meteorites and lunar and terrestrial materials.
Figure 3: Highly siderophile element and Re–Os isotope systematics of GRA 06128/9 and Brachina.


  1. 1

    Rudnick, R. L. & Gao, S. in The Crust (ed. Rudnick, R. L.) Vol. 3, Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) 1–64 (Elsevier-Pergamon, 2003)

    Google Scholar 

  2. 2

    Campbell, I. H. & Taylor, S. R. No water, no granites — no oceans, no continents. Geophys. Res. Lett. 10, 1061–1064 (1985)

    ADS  Article  Google Scholar 

  3. 3

    Wood, J. A., Dickey, J. S., Marvin, U. B. & Powell, B. N. Lunar anorthosites and a geophysical model of the Moon. Proc. Apollo 11 Lunar Sci. Conf. 965–988 (1970)

  4. 4

    Smith, J. A. et al. Petrologic history of the Moon inferred from petrography, mineralogy, and petrogenesis of Apollo 11 rocks. Proc. Apollo 11 Lunar Sci. Conf. 1149–1162 (1970)

  5. 5

    Greenwood, R. C., Franchi, I. A., Jambon, A. & Buchanan, P. C. Widespread magma oceans on asteroidal bodies in the early Solar System. Nature 435, 916–918 (2005)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Bowring, S. A. & Williams, I. S. Priscoan (4.00 – 4.03 Ga) orthogneiss from northwestern Canada. Contrib. Mineral. Petrol. 134, 3–16 (1999)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Carlson, R. W. & Lugmair, G. The age of ferroan anorthosite 60025: Oldest crust on a young Moon? Earth Planet. Sci. Lett. 90, 119–130 (1988)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Ash, R. D., Knott, S. F. & Turner, G. A 4-Gyr shock age for a martian meteorite and implications for the cratering history of Mars. Nature 380, 57–59 (1996)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. in Planetary Materials (ed. Papike, J. J.) Ch. 4 (Mineralogical Society of America, 1998)

    Google Scholar 

  11. 11

    Shearer, C. K. et al. GRA 06129: A meteorite from a new asteroidal geochemical reservoir or Venus? Lunar Planet. Sci. Conf. Abstr. XXXIX, 1825 (2008)

    ADS  Google Scholar 

  12. 12

    Mikouchi, T. & Miyamoto, M. Mineralogy and pyroxene cooling rate of unique achondrite meteorite GRA 06129. Lunar Planet. Sci. Conf. Abstr. XXXIX, 2297 (2008)

    ADS  Google Scholar 

  13. 13

    Clayton, R. N. Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115–149 (1993)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Cherniak, D. J., Landord, W. A. & Ryerson, F. J. Lead diffusion in apatite and zircon using ion implantation and Rutherford back-scattering techniques. Geochim. Cosmochim. Acta 55, 1663–1673 (1991)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Amelin, Y., Krot, A. N., Hutcheon, I. D. & Ulyanov, A. A. Lead isotopic ages of chondrules and calcium-aluminium-rich inclusions. Science 297, 1678–1683 (2002)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Strom, R. G., Schaber, G. G. & Dawson, D. D. The global resurfacing of Venus. J. Geophys. Res. 99 (E5). 10899–10926 (1994)

    ADS  Article  Google Scholar 

  17. 17

    Taylor, G. J. & Scott, E. R. D. in Meteorites, Comets, and Planets (ed. Davis, A. M.) Vol. 1, Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) 477–486 (Elsevier-Pergamon, 2003)

    Google Scholar 

  18. 18

    Taylor, G. J. Core formation in asteroids. J. Geophys. Res. 97, 717–726 (1992)

    Article  Google Scholar 

  19. 19

    Day, J. M. D., Pearson, D. G. & Taylor, L. A. Highly siderophile element constraints on accretion and differentiation of the Earth-Moon system. Science 315, 217–219 (2007)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Birck, J.-L. & Allègre, C. J. Contrasting Re/Os magmatic fractionation in planetary basalts. Earth Planet. Sci. Lett. 124, 139–148 (1994)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Jurewicz, A. J. G., Mittlefehldt, D. W. & Jones, J. H. Experimental partial melting of the Allende (CV) and Murchison (CM) chondrites and the origin of asteroidal basalt. Geochim. Cosmochim. Acta 57, 2123–2139 (1995)

    ADS  Article  Google Scholar 

  22. 22

    Morse, S. A. Basalts and Phase Diagrams (Springer, 1980)

    Google Scholar 

  23. 23

    Tuttle, O. F. & Bowen, N. L. Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol. Soc. Am. Mem. 74, 153p (1958)

    Google Scholar 

  24. 24

    Kushiro, I. On the nature of silicate melt and its significance in magma genesis; regularities in the shift of the liquidus boundaries involving olivine, pyroxene, and silica minerals. Am. J. Sci. 275, 411–431 (1975)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Ziegler, R. A. et al. Petrology, geochemistry and likely provenance of unique achondrite Graves Nunatak 06128. Lunar Planet. Sci. Conf. Abstr. XXXIX, 2456 (2008)

    ADS  Google Scholar 

  26. 26

    Mittlefehldt, D. W., Bogard, D. D., Berkley, J. L. & Garrison, D. H. Brachinites: Igneous rocks from a differentiated asteroid. Meteorit. Planet. Sci. 38, 1601–1625 (2003)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Rumble, D., Irving, A. J., Bunch, T. E., Wittke, J. H. & Kuehner, S. M. Oxygen isotopic and petrological diversity among Brachinites NWA 4872, NWA 4874, NWA 4882 and NWA 4969: How many ancient parent bodies? Lunar Planet. Sci. Conf. Abstr. XXXIX, 1974 (2008)

    ADS  Google Scholar 

  28. 28

    Bockrath, C., Ballhaus, C. & Holzheid, A. Fractionation of the platinum-group elements during mantle melting. Science 305, 1951–1953 (2004)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Keil, K., Stöffler, D., Love, S. G. & Scott, E. R. D. Constraints on the role of impact heating and melting in asteroids. Meteorit. Planet. Sci. 32, 349–363 (1997)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Wilson, L. & Keil, K. Consequences of explosive eruptions on small solar system bodies: The case of the missing basalts on the aubrite parent body. Earth Planet. Sci. Lett. 140, 191–200 (1991)

    ADS  Article  Google Scholar 

  31. 31

    Clark, B.-E. et al. E-type asteroid spectroscopy and compositional modelling. J. Geophys. Res. 109 10.1029/2003JE002200 (2004)

    Article  Google Scholar 

  32. 32

    Spicuzza, M. J., Day, J. M. D., Taylor, L. A. & Valley, J. W. Oxygen isotope constraints on the origin and differentiation of the Moon. Earth Planet. Sci. Lett. 253, 254–265 (2007)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Horan, M. F., Walker, R. J., Morgan, J. W., Grossman, J. N. & Rubin, A. E. Highly siderophile elements in chondrites. Chem. Geol. 196, 27–42 (2003)

    ADS  Article  Google Scholar 

  34. 34

    Day, J. M. D. et al. Comparative petrology, geochemistry, and petrogenesis of evolved, low-Ti mare basalt meteorites from the LaPaz Icefield, Antarctica. Geochim. Cosmochim. Acta 70, 1581–1600 (2006)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Baker, J., Peate, D., Waight, T. & Meyzen, C. Pb isotopic analysis of standards and samples using a 207Pb-204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chem. Geol. 211, 275–303 (2004)

    ADS  CAS  Article  Google Scholar 

  36. 36

    Ludwig, K. R. Isoplot. Program and documentation, version 2.95. (Revised edition of US Open-File report, 91-445, 2003)

  37. 37

    Rumble, D., Miller, M. F., Franchi, I. A. & Greenwood, R. C. Oxygen three-isotope fractionation lines in terrestrial silicate minerals: An inter-laboratory comparison of hydrothermal quartz and eclogitic garnet. Geochim. Cosmochim. Acta 71, 3592–3600 (2007)

    ADS  CAS  Article  Google Scholar 

  38. 38

    Clayton, R. N. & Mayeda, T. K. Oxygen isotope studies of achondrites. Geochim. Cosmochim. Acta 60, 1999–2017 (1996)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Miller, M. F. Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance. Geochim. Cosmochim. Acta 66, 1881–1889 (2002)

    ADS  CAS  Article  Google Scholar 

  40. 40

    Sharp, Z. D. A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim. Cosmochim. Acta 54, 1353–1357 (1990)

    ADS  CAS  Article  Google Scholar 

Download references


We thank the ANSMET 2006/2007 field team, the Meteorite Working Group and the Smithsonian Institution of Washington for collection and provision of the GRA 06128/9 and Brachina meteorites. D. Mittlefehldt and R. Greenwood provided reviews that improved the quality of this paper. A. Patchen and P. Piccoli provided assistance with electron microprobe analysis. Portions of this study were supported by the NASA Cosmochemistry Program: NNX07AM29G (R.J.W.), NNX08AH76G (W.F.M.), NNG05GG03G (L.A.T.).

Author Contributions All authors participated in data collection and interpretation and commented on the manuscript. J.M.D.D led the project and wrote the paper.

Author information



Corresponding author

Correspondence to James M. D. Day.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, a Supplementary Discussion, Supplementary References and Supplementary Figures S1-S5 with Legends (PDF 2437 kb)

Supplementary Table 1

This file contains Supplementary Table 1 (XLS 16 kb)

Supplementary Table 2

This file contains Supplementary Table 2 (XLS 18 kb)

Supplementary Table 3

This file contains Supplementary Table 3 (XLS 16 kb)

Supplementary Table 4

This file contains Supplementary Table 4 (XLS 29 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Day, J., Ash, R., Liu, Y. et al. Early formation of evolved asteroidal crust. Nature 457, 179–182 (2009). https://doi.org/10.1038/nature07651

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing