Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Collective fluid dynamics of a polariton condensate in a semiconductor microcavity

Abstract

Semiconductor microcavities offer unique systems in which to investigate the physics of weakly interacting bosons. Their elementary excitations, polaritonsmixtures of excitons and photonscan accumulate in macroscopically degenerate states to form various types of condensate in a wide range of experimental configurations, under either incoherent1,2 or coherent3,4 excitation. Condensates of polaritons have been put forward as candidates for superfluidity5,6, and the formation of vortices7 as well as elementary excitations with linear dispersion8 are actively sought as evidence to support this. Here, using a coherent excitation triggered by a short optical pulse, we have created and set in motion a macroscopically degenerate state of polaritons that can be made to collide with a variety of defects present in the microcavity. Our experiments show striking manifestations of a coherent light–matter packet, travelling at high speed (of the order of one per cent of the speed of light) and displaying collective dynamics consistent with superfluidity, although one of a highly unusual character as it involves an out-of-equilibrium dissipative system. Our main results are the observation of a linear polariton dispersion accompanied by diffusionless motion; flow without resistance when crossing an obstacle; suppression of Rayleigh scattering; and splitting into two fluids when the size of the obstacle is comparable to the size of the wave packet. This work opens the way to the investigation of new phenomenology of out-of-equilibrium condensates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental configuration of the TOPO.
Figure 2: Experimental and theoretical dispersions.
Figure 3: Free movement of a polariton droplet.
Figure 4: Simulation of the travelling signal polariton state within the pump spot.
Figure 5: Images of a polariton droplet colliding against native defects.

Similar content being viewed by others

References

  1. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006)

    Article  ADS  CAS  Google Scholar 

  2. Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose-Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007)

    Article  ADS  CAS  Google Scholar 

  3. Stevenson, R. M. et al. Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities. Phys. Rev. Lett. 85, 3680–3683 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Saba, M. et al. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities. Nature 414, 731–735 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Kavokin, A., Malpuech, G. & Laussy, F. P. Polariton laser and polariton superfluidity in microcavities. Phys. Lett. A 306, 187–199 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Carusotto, I. & Ciuti, C. Probing microcavity polariton superfluidity through resonant Rayleigh scattering. Phys. Rev. Lett. 93, 166401 (2004)

    Article  ADS  Google Scholar 

  7. Lagoudakis, K. G. et al. Quantised vortices in an exciton–polariton fluid. Nature Phys. 4, 706–710 (2008)

    Article  ADS  CAS  Google Scholar 

  8. Utsunomiya, S. et al. Observation of Bogoliubov excitations in exciton-polariton condensates. Nature Phys. 4, 700–705 (2008)

    Article  CAS  Google Scholar 

  9. Abo-Shaeer, J. R., Raman, C., Vogels, J. M. & Ketterle, W. Observation of vortex lattices in Bose-Einstein condensates. Science 292, 476–479 (2001)

    Article  ADS  CAS  Google Scholar 

  10. Onofrio, R. et al. Observation of superfluid flow in a Bose-Einstein condensed gas. Phys. Rev. Lett. 85, 2228–2231 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Steinhauer, J., Ozeri, R., Katz, N. & Davidson, N. Excitation spectrum of a Bose-Einstein condensate. Phys. Rev. Lett. 88, 120407 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Carusotto, I., Hu, S. X., Collins, L. A. & Smerzi, A. Bogoliubov-Cerenkov radiation in a Bose-Einstein condensate flowing against an obstacle. Phys. Rev. Lett. 97, 260403 (2006)

    Article  ADS  CAS  Google Scholar 

  13. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992)

    Article  CAS  Google Scholar 

  14. Bajoni, D., Senellart, P., Lemaître, A. & Bloch, J. Photon lasing in GaAs microcavity: Similarities with a polariton condensate. Phys. Rev. B 76, 201305(R) (2007)

    Article  ADS  Google Scholar 

  15. Lai, C. W. et al. Coherent zero-state and π-state in an exciton–polariton condensate array. Nature 450, 529–532 (2007)

    Article  ADS  CAS  Google Scholar 

  16. Krizhanovskii, D. N. et al. Dominant effect of polariton-polariton interactions on the coherence of the microcavity optical parametric oscillator. Phys. Rev. Lett. 97, 097402 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Porras, D. & Tejedor, C. Linewidth of a polariton laser: Theoretical analysis of self-interaction effects. Phys. Rev. B 67, 161310 (2003)

    Article  ADS  Google Scholar 

  18. Perrin, M., Senellart, P., Lemaître, A. & Bloch, J. Polariton relaxation in semiconductor microcavities: Efficiency of electron-polariton scattering. Phys. Rev. B 72, 075340 (2005)

    Article  ADS  Google Scholar 

  19. Bolda, E. L., Chiao, R. Y. & Zurek, H. Dissipative optical flow in a nonlinear Fabry-Pérot cavity. Phys. Rev. Lett. 86, 416–419 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Ballarini, D. et al. Observation of long-lived polariton states in semiconductor microcavities across the parametric threshold. Preprint at 〈http://arxiv.org/abs/arXiv:0807.3224〉 (2008)

  21. Freixanet, T., Sermage, B., Tiberj, A. & Planel, R. In-plane propagation of excitonic cavity polaritons. Phys. Rev. B 61, 7233–7236 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Langbein, W. et al. Polarization beats in ballistic propagation of exciton-polaritons in microcavities. Phys. Rev. B 75, 075323 (2007)

    Article  ADS  Google Scholar 

  23. Szymanska, M. H., Keeling, J. & Littlewood, P. B. Nonequilibrium quantum condensation in an incoherently pumped dissipative system. Phys. Rev. Lett. 96, 230602 (2006)

    Article  ADS  CAS  Google Scholar 

  24. Gurioli, M. et al. Weak localization of light in a disordered microcavity. Phys. Rev. Lett. 94, 183901 (2005)

    Article  ADS  CAS  Google Scholar 

  25. Sanvitto, D. et al. Spatial structure and stability of the macroscopically occupied polariton state in the microcavity optical parametric oscillator. Phys. Rev. B 73, 241308(R) (2006)

    Article  ADS  Google Scholar 

  26. Malpuech, G., Solnyshkov, D. D., Ouerdane, H., Glazov, M. M. & Shelykh, I. Bose glass and superfluid phase of cavity polaritons. Phys. Rev. Lett. 98, 206402 (2007)

    Article  ADS  CAS  Google Scholar 

  27. Sanvitto, D., Whittaker, D. M., Skolnick, M. S. & Roberts, J. S. Continuous wave pump-probe experiment on a planar microcavity. Phys. Stat. Sol. (a) 202, 353–356 (2005)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Carusotto, M. Wouters and N. Berloff for discussions and D. Steel for a critical reading of the manuscript. This work was partially supported by the Spanish Ministerio de Educación y Ciencia (MEC) (MAT2005-01388, NAN2004-09109-C04-04 & QOIT-CSD2006-00019), the Comunidad Autónoma de Madrid (S-0505/ESP-0200) and the IMDEA-Nanociencia. D.B. and E.d.V. acknowledge a scholarship (Formacion de Profesorado Universitario) of the Spanish MEC. D.S. and M.D.M. thank the Ramón y Cajal Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sanvitto.

Supplementary information

Supplementary Figure

This file contains Supplementary Figure 1 with Legend (PDF 81 kb)

Supplementary Video 9

Supplementary Video 9 shows polaritons colliding with a large point defect in reciprocal space, corresponding to the images shown in Fig.5IIb. This is the k-space counterpart of Supplementary Video 8. (MOV 1006 kb)

Supplementary Video 1

Supplementary Video 1 shows appearance of the Rayleigh scattering circle in reciprocal space for a moving polariton droplet created with low pump power. (MOV 4768 kb)

Supplementary Video 2

Supplementary Video 2 shows polaritons, created with low pump power, getting trapped in a local defect. This is the real space counterpart of Supplementary Video 1. (MOV 3733 kb)

Supplementary Video 3

Supplementary Video 3 shows free polariton motion in real space, corresponding to the images shown in Fig.3a. (MOV 1007 kb)

Supplementary Video 4

Supplementary Video 4 shows free polariton motion in reciprocal space, corresponding to the images shown in Fig.3b. This is the k-space counterpart of Supplementary Video 3. (MOV 1089 kb)

Supplementary Video 5

Supplementary Video 5 shows simulation of a free polariton motion in real and k-space, corresponding to the image shown in Fig.4a (MOV 2273 kb)

Supplementary Video 6

Supplementary Video 6 shows polaritons colliding with a small point defect in real space, corresponding to the images shown in Fig.5Ia. (MOV 1698 kb)

Supplementary Video

Supplementary Video 7 shows polaritons colliding with a small point defect in reciprocal space, corresponding to the images shown in Fig.5Ib. This is the k-space counterpart of Supplementary Video 6. (MOV 793 kb)

Supplementary Video 8

Supplementary Video 8 shows polaritons colliding with a large point defect in real space, corresponding to the images shown in Fig.5IIa. (MOV 1572 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amo, A., Sanvitto, D., Laussy, F. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009). https://doi.org/10.1038/nature07640

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07640

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing