Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Next-generation genetics in plants

Abstract

Natural variation presents one of the fundamental challenges of modern biology. Soon, the genome sequences of thousands of individuals will be known for each of several species. But how does the genotypic variation that will be observed among these individuals translate into phenotypic variation? Plants are in many ways ideal for addressing this question, and resources that are unmatched, except in humans, have now been developed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GWA mapping is ineffective if there is strong genetic differentiation between subpopulations (that is, if there is structure in the population).
Figure 2: The performance of GWA mapping depends strongly on the genetic architecture of the trait.

Similar content being viewed by others

References

  1. Nilsson-Ehle, H. Kreuzungsuntersuchungen an Hafer und Weizen. 1. Lunds Universitets Årsskrift 5, 1–122 (1909).

    Google Scholar 

  2. East, E. M. A Mendelian interpretation of variation that is apparently continuous. Am. Nat. 44, 65–82 (1910).

    Article  Google Scholar 

  3. Sax, K. The association of size differences with seed coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8, 552–560 (1923).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Doebley, J., Stec, A. & Hubbard, L. The evolution of apical dominance in maize. Nature 386, 485–488 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Frary, A. et al. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289, 85–88 (2000).

    Article  ADS  CAS  Google Scholar 

  6. Fridman, E., Pleban, T. & Zamir, D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc. Natl Acad. Sci. USA 97, 4718–4723 (2000). This study pinpointed a QTL to a small intragenic region by using recombination mapping.

    Article  ADS  CAS  Google Scholar 

  7. Yano, M. et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering-time gene CONSTANS. Plant Cell 12, 2473–2483 (2000).

    Article  CAS  Google Scholar 

  8. Bentsink, L., Jowett, J., Hanhart, C. J. & Koornneef, M. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc. Natl Acad. Sci. USA 103, 17042–17047 (2006).

    Article  ADS  CAS  Google Scholar 

  9. Mouchel, C. F., Briggs, G. C. & Hardtke, C. S. Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev. 18, 700–714 (2004).

    Article  CAS  Google Scholar 

  10. Macquet, A. et al. A naturally occurring mutation in an Arabidopsis accession affects a β-d-galactosidase that increases the hydrophilic potential of rhamnogalacturonan I in seed mucilage. Plant Cell 19, 3990–4006 (2007).

    Article  CAS  Google Scholar 

  11. Baxter, I. et al. Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genet. 4, e1000004 (2008).

    Article  Google Scholar 

  12. The International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  13. Frazer, K. A. et al. A second-generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

    Article  ADS  CAS  Google Scholar 

  14. Nordborg, M. et al. The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol. 3, e196 (2005).

    Article  Google Scholar 

  15. Clark, R.M. et al. Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317, 338–342 (2007). This study provided the first genomic view of the pattern of polymorphism in a plant.

    Article  ADS  CAS  Google Scholar 

  16. Kim, S. et al. Recombination and linkage disequilibrium in Arabidopsis thaliana. Nature Genet. 39, 1151–1155 (2007).

    Article  CAS  Google Scholar 

  17. Shindo C. et al. Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol. 138, 1163–1173 (2005).

  18. Thornsberry, J. M. et al. Dwarf8 polymorphisms associate with variation in flowering time. Nature Genet. 28, 286–289 (2001).

    Article  CAS  Google Scholar 

  19. Flint-Garcia, S. A. et al. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J. 44, 1054–1064 (2005).

    Article  CAS  Google Scholar 

  20. Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genet. 38, 303–308 (2006). This study identified an effective way to account for population structure in association mapping, an innovative approach that has had a large impact on the field.

    Article  Google Scholar 

  21. Aranzana, M. J. et al. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet. 1, e60 (2005).

    Article  Google Scholar 

  22. Zhao, K. et al. An Arabidopsis example of association mapping in structured samples. PLoS Genet. 3, e4 (2007).

    Article  Google Scholar 

  23. Harjes, C. E. et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319, 330–333 (2008).

    Article  ADS  CAS  Google Scholar 

  24. Balasubramanian, S. et al. The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana. Nature Genet. 38, 711–715 (2006).

    Article  CAS  Google Scholar 

  25. Ewens, W. & Spielman, R. The transmission/disequilibrium test: history, subdivision, and admixture. Am. J. Hum. Genet. 57, 455–464 (1995).

    Article  CAS  Google Scholar 

  26. Yu, J., Holland, J. B., McMullen, M. D. & Buckler, E. S. Genetic design and statistical power of nested association mapping in maize. Genetics 178, 539–551 (2008). This report introduced an elegant experimental combination that simultaneously exploits the advantages of mapping in experimental crosses and the increased resolution of association mapping.

    Article  Google Scholar 

  27. Valdar, W. et al. Genome-wide genetic association of complex traits in heterogeneous stock mice. Nature Genet. 38, 879–887 (2006).

    Article  CAS  Google Scholar 

  28. Churchill, G. A. et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genet. 36, 1133–1137 (2004).

    Article  CAS  Google Scholar 

  29. McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Rev. Genet. 9, 356–369 (2008).

    Article  CAS  Google Scholar 

  30. Iles, M. M. What can genome-wide association studies tell us about the genetics of common disease? PLoS Genet. 4, e33 (2008).

    Article  Google Scholar 

  31. Ming, R. et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452, 991–996 (2008).

    Article  ADS  CAS  Google Scholar 

  32. Wright, S. I. The effects of artificial selection on the maize genome. Science 308, 1310–1314 (2005).

    Article  CAS  Google Scholar 

  33. Buckler, E. S., Gaut, B. S. & McMullen, M. D. Molecular and functional diversity of maize. Curr. Opin. Plant Biol. 9, 172–176 (2006).

    Article  CAS  Google Scholar 

  34. Korbel, J. O. et al. Paired-end mapping reveals extensive structural variation in the human genome. Science 318, 420–426 (2007).

    Article  ADS  CAS  Google Scholar 

  35. Kidd, J. M. et al. Mapping and sequencing of structural variation from eight human genomes. Nature 453, 56–64 (2008).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Studies of natural genetic variation are supported by the National Science Foundation and the National Institutes of Health (M.N.), and by the German Research Foundation, the German Federal Ministry of Education and Research, the European Union's Sixth Framework Programme, the Human Frontier Science Program and the Max Planck Society (D.W.).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to the authors (magnus@usc.edu; weigel@weigelworld.org).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordborg, M., Weigel, D. Next-generation genetics in plants. Nature 456, 720–723 (2008). https://doi.org/10.1038/nature07629

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07629

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing