Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Energy flux determines magnetic field strength of planets and stars

Abstract

The magnetic fields of Earth and Jupiter, along with those of rapidly rotating, low-mass stars, are generated by convection-driven dynamos that may operate similarly1,2,3,4 (the slowly rotating Sun generates its field through a different dynamo mechanism5). The field strengths of planets and stars vary over three orders of magnitude, but the critical factor causing that variation has hitherto been unclear5,6. Here we report an extension of a scaling law derived from geodynamo models7 to rapidly rotating stars that have strong density stratification. The unifying principle in the scaling law is that the energy flux available for generating the magnetic field sets the field strength. Our scaling law fits the observed field strengths of Earth, Jupiter, young contracting stars and rapidly rotating low-mass stars, despite vast differences in the physical conditions of the objects. We predict that the field strengths of rapidly rotating brown dwarfs and massive extrasolar planets are high enough to make them observable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scaling law versus results from dynamo models.
Figure 2: Scaling law versus magnetic fields of planets and stars.

Similar content being viewed by others

References

  1. Donati, J.-F. et al. The large-scale axisymmetric magnetic topology of a very low-mass fully convective star. Science 311, 633–635 (2006)

    Article  ADS  CAS  Google Scholar 

  2. Morin, J. et al. Large-scale magnetic topologies of mid-M dwarfs. Mon. Not. R. Astron. Soc. 390, 567–581 (2008)

    Article  ADS  CAS  Google Scholar 

  3. Dobler, W., Stix, M. & Brandenburg, A. Magnetic field generation in fully convective rotating spheres. Astrophys. J. 638, 336–347 (2006)

    Article  ADS  Google Scholar 

  4. Browning, M. Simulations of dynamo action in fully convective stars. Astrophys. J. 676, 1262–1280 (2008)

    Article  ADS  CAS  Google Scholar 

  5. Charbonneau, P. Dynamo models of the solar cycle. Living Rev. Sol. Phys. 2, 2 (2005); 〈http://solarphysics.livingreviews.org/Articles/lrsp-2005-2〉 (cited on 13 November 2008)

    Google Scholar 

  6. Stevenson, D. J. Planetary magnetic fields. Earth Planet. Sci. Lett. 208, 1–11 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Christensen, U. R. & Aubert, J. Scaling properties of convection-driven dynamos in rotating spherical shells and applications to planetary magnetic fields. Geophys. J. Int. 166, 97–114 (2006)

    Article  ADS  Google Scholar 

  8. Pizzolato, N., Maggio, A., Micela, G., Sciortino, S. & Ventura, P. The stellar activity-rotation relationship revisited: Dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs. Astron. Astrophys. 397, 147–157 (2003)

    Article  ADS  Google Scholar 

  9. Reiners, A., Basri, M. & Browning, M. Evidence for magnetic flux saturation in rapidly rotating M stars. Astrophys. J. (in the press)

  10. Sreenivasan, B. & Jones, C. A. The role of inertia in the evolution of spherical dynamos. Geophys. J. Int. 164, 467–476 (2006)

    Article  ADS  Google Scholar 

  11. Olson, P. & Christensen, U. R. Dipole moment scaling for convection-driven planetary dynamos. Earth Planet. Sci. Lett. 250, 561–571 (2006)

    Article  ADS  CAS  Google Scholar 

  12. Nimmo, F. in Treatise on Geophysics Vol. 8, Core dynamics (ed. Olson, P.) 31–66 (Elsevier, 2007)

    Book  Google Scholar 

  13. Guillot, T. A comparison of the interiors of Jupiter and Saturn. Planet. Space Sci. 47, 1183–1200 (1999)

    Article  ADS  CAS  Google Scholar 

  14. Granzer, T., Schüssler, M., Caligari, P. & Strassmeier, K. G. Distribution of star spots on cool stars. II. Pre-main-sequence and ZAMS stars between 0.4 Msun and 1.7 Msun . Astron. Astrophys. 355, 1087–1095 (2000)

    ADS  Google Scholar 

  15. Johns-Krull, C. M. The magnetic field of classical T Tauri stars. Astrophys. J. 664, 975–985 (2007)

    Article  ADS  CAS  Google Scholar 

  16. Reiners, A. & Basri, G. The first direct measurements of surface magnetic fields on very low mass stars. Astrophys. J. 656, 1121–1135 (2007)

    Article  ADS  CAS  Google Scholar 

  17. Bloxham, J. & Jackson, A. Time-dependent mapping of the magnetic field at the core-mantle boundary. J. Geophys. Res. 97, 19537–19563 (1992)

    Article  ADS  Google Scholar 

  18. Connerney, J. E. P. Magnetic fields of the outer planets. J. Geophys. Res. 98, 18659–18679 (1993)

    Article  ADS  Google Scholar 

  19. Saar, S. H. in Magnetodynamic Phenomena in the Solar Atmosphere (eds Uchida, Y., Kosugi, T. & Hudson, H. S.) 367–374 (Kluwer, 1996)

    Book  Google Scholar 

  20. Christensen, U. R. A deep dynamo generating Mercury’s magnetic field. Nature 444, 1056–1058 (2006)

    Article  ADS  CAS  Google Scholar 

  21. Stevenson, D. J. Saturn’s luminosity and magnetism. Science 208, 746–748 (1980)

    Article  ADS  CAS  Google Scholar 

  22. Stanley, S. & Bloxham, J. Convective region geometry as the cause for Uranus’s and Neptune’s unusual magnetic fields. Nature 428, 151–153 (2004)

    Article  ADS  CAS  Google Scholar 

  23. Burrows, A., Hubbard, W. B., Lunine, J. I. & Liebert, J. The theory of brown dwarfs and extrasolar giant planets. Rev. Mod. Phys. 73, 719–765 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Sanchez-Lavega, A. The magnetic field in giant extrasolar planets. Astrophys. J. 609, L87–L90 (2004)

    Article  ADS  Google Scholar 

  25. Zarka, P. Plasma interactions of exoplanets with their parent star and associated radio emissions. Planet. Space Sci. 55, 598–617 (2007)

    Article  ADS  Google Scholar 

  26. Lay, T., Hernlund, J. & Buffett, B. A. Core-mantle boundary heat flow. Nature Geosci. 1, 25–32 (2008)

    Article  ADS  CAS  Google Scholar 

  27. Guillot, T., Stevenson, D. J., Hubbard, W. B. & Saumon, D. in Jupiter (eds Bagenal, F., Towling, T. E. & McKinnon, W. B.) 39–57 (Cambridge Univ. Press, 2005)

    Google Scholar 

  28. Neuhäuser, R., Sterzik, M. F., Schmitt, J. H. M. M., Wichmann, R. & Krautter, J. ROSAT survey observations of T Tauri stars in Taurus. Astron. Astrophys. 297, 391–417 (1995)

    ADS  Google Scholar 

  29. Baraffe, I. & Chabrier, G. Mass-spectral class relationship for M-dwarfs. Astrophys. J. 461, L51–L54 (1996)

    Article  ADS  Google Scholar 

  30. Drilling, J. S. & Landolt, A. U. in Allen’s Astrophysical Quantities (ed. Cox, A. N.) 381–396 (Springer, 2000)

    Google Scholar 

Download references

Acknowledgements

Reviews by C. Johns-Krull helped to sharpen the paper. U.R.C. thanks M. Rempel for prompting this study by asking if planetary scaling laws also apply to stars.

Author Contributions U.R.C. suggested the basic concept, performed dynamo simulations and wrote the paper. V.H. calculated stellar models. A.R. provided magnetic field data and other stellar data. All authors discussed results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich R. Christensen.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Data, and Supplementary Tables 1-6 (PDF 191 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, U., Holzwarth, V. & Reiners, A. Energy flux determines magnetic field strength of planets and stars. Nature 457, 167–169 (2009). https://doi.org/10.1038/nature07626

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07626

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing