Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

18 years of science with the Hubble Space Telescope

Abstract

After several decades of planning, the Hubble Space Telescope (HST) was launched in 1990 as the first of NASA’s Great Observatories. After a rocky start arising from an error in the fabrication of its main mirror, it went on to change forever many fields of astronomy, and to capture the public’s imagination with its images. An ongoing programme of servicing missions has kept the telescope on the cutting edge of astronomical research. Here I review the advances made possible by the HST over the past 18 years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Hubble Space Telescope, while docked with the Space Shuttle Endeavour during servicing.
Figure 2: Images taken from space have superb spatial resolution.
Figure 3: A montage showing the life cycle of stars.
Figure 4: Galaxies near and far.

Similar content being viewed by others

References

  1. Benedict, G. F. et al. Hubble Space Telescope fine guidance sensor parallaxes of Galactic Cepheid Variable stars: Period-luminosity relations. Astron. J. 133, 1810–1827 (2007)

    ADS  Google Scholar 

  2. Kennicutt, R. C. et al. The Hubble Space Telescope Key Project on the extragalactic distance scale. XIII. The metallicity dependence of the Cepheid distance scale. Astrophys. J. 498, 181–194 (1998)

    ADS  Google Scholar 

  3. O’Dell, C. R., Wen, Z. & Hu, X. Discovery of new objects in the Orion nebula on HST images - Shocks, compact sources, and protoplanetary disks. Astrophys. J. 410, 696–700 (1993)

    ADS  Google Scholar 

  4. O’Dell, C. R. & Wen, Z. Postrefurbishment mission Hubble Space Telescope images of the core of the Orion Nebula: Proplyds, Herbig-Haro objects, and measurements of a circumstellar disk. Astrophys. J. 436, 194–202 (1994)

    ADS  Google Scholar 

  5. Shu, F. H., Adams, F. C. & Lizano, S. Star formation in molecular clouds - Observation and theory. Annu. Rev. Astron. Astrophys. 25, 23–81 (1987)

    CAS  ADS  Google Scholar 

  6. Felli, M., Churchwell, E., Wilson, T. L. & Taylor, G. B. The radio continuum morphology of the Orion Nebula - From 10 arcmin to 0.1 arcsec resolution. Astron. Astrophys. Suppl. Ser. 98, 137–164 (1993)

    ADS  Google Scholar 

  7. Schneider, G. et al. NICMOS imaging of the HR 4796A circumstellar disk. Astrophys. J. 513, L127–L130 (1999)

    ADS  Google Scholar 

  8. Heap, S. R. et al. Space Telescope Imaging Spectrograph coronagraphic observations of β Pictoris. Astrophys. J. 539, 435–444 (2000)

    ADS  Google Scholar 

  9. Krist, J. E. et al. Hubble Space Telescope Advanced Camera for Surveys coronagraphic imaging of the AU Microscopii debris disk. Astron. J. 129, 1008–1017 (2005)

    ADS  Google Scholar 

  10. Golimowski, D. A. et al. Hubble Space Telescope ACS multiband coronagraphic imaging of the debris disk around β Pictoris. Astron. J. 131, 3109–3130 (2006)

    ADS  Google Scholar 

  11. Kalas, P., Graham, J. R. & Clampin, M. A planetary system as the origin of structure in Fomalhaut’s dust belt. Nature 435, 1067–1070 (2005)

    CAS  ADS  Google Scholar 

  12. Martin, E. L., Brandner, W. & Basri, G. A search for companions to nearby brown dwarfs: The binary DENIS-P J1228.2-1547. Science 283, 1718–1720 (1999)

    CAS  PubMed  ADS  Google Scholar 

  13. Lowrance, P. J. et al. A candidate substellar companion to CD -33 deg7795 (TWA 5). Astrophys. J. 512, L69–L72 (1999)

    ADS  Google Scholar 

  14. Henry, T. J. et al. The optical mass-luminosity relation at the end of the main sequence (0.08 - 0.20M). Astrophys. J. 512, 864–873 (1999)

    ADS  Google Scholar 

  15. Bouy, H. et al. First determination of the dynamical mass of a binary L dwarf. Astron. Astrophys. 423, 341–352 (2004)

    CAS  ADS  Google Scholar 

  16. Golimowski, D. A., Burrows, C. J., Kulkarni, S. R., Oppenheimer, B. R. & Brukardt, R. A. Wide Field Planetary Camera 2 observations of the brown dwarf Gliese 229B: Optical colors and orbital motion. Astron. J. 115, 2579–2586 (1998)

    ADS  Google Scholar 

  17. Burgasser, A. J. et al. Binarity in brown dwarfs: T dwarf binaries discovered with the Hubble Space TelescopeWide Field Planetary Camera 2. Astrophys. J. 586, 512–526 (2003)

    ADS  Google Scholar 

  18. Martín, E. L. et al. Membership and multiplicity among very low mass stars and brown dwarfs in the Pleiades cluster. Astrophys. J. 543, 299–312 (2000)

    ADS  Google Scholar 

  19. Allen, P. R. Star formation via the little guy: A Bayesian study of ultracool dwarf imaging surveys for companions. Astrophys. J. 668, 492–506 (2007)

    ADS  Google Scholar 

  20. Luhman, K. L. et al. The initial mass function of low-mass stars and brown dwarfs in young clusters. Astrophys. J. 540, 1016–1040 (2000)

    ADS  Google Scholar 

  21. Najita, J. R., Tiede, G. P. & Carr, J. S. From stars to superplanets: The low-mass initial mass function in the young cluster IC 348. Astrophys. J. 541, 977–1003 (2000)

    ADS  Google Scholar 

  22. King, I. R., Anderson, J., Cool, A. M. & Piotto, G. The luminosity function of the globular cluster NGC 6397 near the limit of hydrogen burning. Astrophys. J. 492, L37–L40 (1998)

    CAS  ADS  Google Scholar 

  23. Richer, H. B. et al. Deep Advanced Camera for Surveys imaging in the globular cluster NGC 6397: the cluster color-magnitude diagram and luminosity function. Astron. J. 135, 2141–2154 (2008)

    CAS  ADS  Google Scholar 

  24. Bedin, L. R. et al. ω Centauri: The population puzzle goes deeper. Astrophys. J. 605, L125–L128 (2004)

    ADS  Google Scholar 

  25. Piotto, G. et al. A triple main sequence in the globular cluster NGC 2808. Astrophys. J. 661, L53–L56 (2007)

    CAS  ADS  Google Scholar 

  26. Currie, D. G. et al. Astrometric analysis of the homunculus of eta Carinae with the Hubble Space Telescope. Astron. J. 112, 1115–1127 (1996)

    ADS  Google Scholar 

  27. Morse, J. A. et al. Hubble Space Telescope proper-motion measurements of the η Carinae Nebula. Astrophys. J. 548, L207–L211 (2001)

    ADS  Google Scholar 

  28. O’Dell, C. R. & Doi, T. High proper motion features in the central Orion nebula. Astron. J. 125, 277–287 (2003)

    ADS  Google Scholar 

  29. Bond, H. E. et al. An energetic stellar outburst accompanied by circumstellar light echoes. Nature 422, 405–408 (2003)

    CAS  PubMed  ADS  Google Scholar 

  30. Jakobsen, P. et al. First results from the Faint Object Camera - SN 1987A. Astrophys. J. 369, L63–L66 (1991)

    CAS  ADS  Google Scholar 

  31. Burrows, C. J. et al. Hubble Space Telescope observations of the SN 1987A triple ring nebula. Astrophys. J. 452, 680–684 (1995)

    ADS  Google Scholar 

  32. Plait, P. C., Lundqvist, P., Chevalier, R. A. & Kirshner, R. P. HST observations of the ring around SN 1987A. Astrophys. J. 439, 730–751 (1995)

    CAS  ADS  Google Scholar 

  33. Balick, B. & Frank, A. Shapes and shaping of planetary nebulae. Annu. Rev. Astron. Astrophys. 40, 439–486 (2002)

    ADS  Google Scholar 

  34. Sahai, R. & Trauger, J. T. Multipolar bubbles and jets in low-excitation planetary nebulae: Toward a new understanding of the formation and shaping of planetary nebulae. Astron. J. 116, 1357–1366 (1998)

    ADS  Google Scholar 

  35. Balick, B. et al. FLIERs and other microstructures in planetary nebulae. IV. Images of elliptical PNs from the Hubble Space Telescope. Astron. J. 116, 360–371 (1998)

    ADS  Google Scholar 

  36. O’Dell, C. R., Balick, B., Hajian, A. R., Henney, W. J. & Burkert, A. Knots in nearby planetary nebulae. Astron. J. 123, 3329–3347 (2002)

    ADS  Google Scholar 

  37. Reed, D. S. et al. Hubble Space Telescope measurements of the expansion of NGC 6543: Parallax distance and nebular evolution. Astron. J. 118, 2430–2441 (1999)

    ADS  Google Scholar 

  38. Fernández, R., Monteiro, H. & Schwarz, H. E. Proper motion and kinematics of the ansae in NGC 7009. Astrophys. J. 603, 595–598 (2004)

    ADS  Google Scholar 

  39. Walter, F. M. The proper motion, parallax, and origin of the isolated neutron star RX J185635–3754. Astrophys. J. 549, 433–440 (2001)

    ADS  Google Scholar 

  40. Fruchter, A. S. et al. Hubble Space Telescope and Palomar imaging of GRB 990123: Implications for the nature of gamma-ray bursts and their hosts. Astrophys. J. 519, L13–L16 (1999)

    ADS  Google Scholar 

  41. Bloom, J. S., Kulkarni, S. R. & Djorgovski, S. G. The observed offset distribution of gamma-ray bursts from their host galaxies: A robust clue to the nature of the progenitors. Astron. J. 123, 1111–1148 (2002)

    ADS  Google Scholar 

  42. Fruchter, A. S. et al. Long γ-ray bursts and core-collapse supernovae have different environments. Nature 441, 463–468 (2006)

    CAS  PubMed  ADS  Google Scholar 

  43. Kormendy, J. & Richstone, D. Inward bound? The search for supermassive black holes in galactic nuclei. Annu. Rev. Astron. Astrophys. 33, 581–624 (1995)

    ADS  Google Scholar 

  44. Bahcall, J. N., Kirhakos, S., Saxe, D. H. & Schneider, D. P. Hubble Space Telescope images of a sample of 20 nearby luminous quasars. Astrophys. J. 479, 642–658 (1997)

    ADS  Google Scholar 

  45. Ferrarese, L., Ford, H. C. & Jaffe, W. Evidence for a massive black hole in the active galaxy NGC 4261 from Hubble Space Telescope images and spectra. Astrophys. J. 470, 444–459 (1996)

    CAS  ADS  Google Scholar 

  46. Kormendy, J. et al. Hubble Space Telescope spectroscopic evidence for a 2 × 109 M black hole in NGC 3115. Astrophys. J. 459, L57–L60 (1996)

    ADS  Google Scholar 

  47. van der Marel, R. P., Cretton, N., de Zeeuw, P. T. & Rix, H.-W. Improved evidence for a black hole in M32 from HST/FOS Spectra. II. Axisymmetric dynamical models. Astrophys. J. 493, 613–631 (1998)

    ADS  Google Scholar 

  48. Gebhardt, K. et al. Axisymmetric, three-integral models of galaxies: A massive black hole in NGC 3379. Astron. J. 119, 1157–1171 (2000)

    CAS  ADS  Google Scholar 

  49. Ferrarese, L. & Merritt, D. A fundamental relation between supermassive black holes and their host galaxies. Astrophys. J. 539, L9–L12 (2000)

    ADS  Google Scholar 

  50. Gebhardt, K. et al. A relationship between nuclear black hole mass and galaxy velocity dispersion. Astrophys. J. 539, L13–L16 (2000)

    ADS  Google Scholar 

  51. Gerssen, J. et al. Hubble Space Telescope evidence for an intermediate-mass black hole in the globular cluster M15. II. Kinematic analysis and dynamical modeling. Astron. J. 124, 3270–3288 (2002)

    ADS  Google Scholar 

  52. Gebhardt, K., Rich, R. M. & Ho, L. C. A 20,000M black hole in the stellar cluster G1. Astrophys. J. 578, L41–L45 (2002)

    ADS  Google Scholar 

  53. Gebhardt, K. et al. M33: A galaxy with no supermassive black hole. Astron. J. 122, 2469–2476 (2001)

    ADS  Google Scholar 

  54. Ferrarese, L. et al. A fundamental relation between compact stellar nuclei, supermassive black holes, and their host galaxies. Astrophys. J. 644, L21–L24 (2006)

    ADS  Google Scholar 

  55. Wehner, E. H. & Harris, W. E. From supermassive black holes to dwarf elliptical nuclei: A mass continuum. Astrophys. J. 644, L17–L20 (2006)

    ADS  Google Scholar 

  56. Balcells, M., Graham, A. W. & Peletier, R. F. Galactic bulges from Hubble Space Telescope NICMOS Observations: Central Galaxian objects, and nuclear profile slopes. Astrophys. J. 665, 1084–1103 (2007)

    CAS  ADS  Google Scholar 

  57. Seth, A. C., Dalcanton, J. J., Hodge, P. W. & Debattista, V. P. Clues to nuclear star cluster formation from edge-on spirals. Astron. J. 132, 2539–2555 (2006)

    CAS  ADS  Google Scholar 

  58. Lauer, T. R. et al. The centers of early-type galaxies with HST. I. An observational survey. Astron. J. 110, 2622–2654 (1995)

    ADS  Google Scholar 

  59. Faber, S. M. et al. The centers of early-type galaxies with HST. IV. Central parameter relations. Astron. J. 114, 1771–1796 (1997)

    ADS  Google Scholar 

  60. Ferrarese, L. et al. The ACS Virgo cluster survey. VI. Isophotal analysis and the structure of early-type galaxies. Astrophys. J. Suppl. Ser. 164, 334–434 (2006)

    CAS  ADS  Google Scholar 

  61. Rest, A. et al. WFPC2 images of the central regions of early-type galaxies. I. The data. Astron. J. 121, 2431–2482 (2001)

    ADS  Google Scholar 

  62. Ravindranath, S., Ho, L. C., Peng, C. Y., Filippenko, A. V. & Sargent, W. L. W. Central structural parameters of early-type galaxies as viewed with Nicmos on the Hubble Space Telescope. Astron. J. 122, 653–678 (2001)

    ADS  Google Scholar 

  63. Lauer, T. R. et al. The centers of early-type galaxies with Hubble Space Telescope. VI. Bimodal central surface brightness profiles. Astrophys. J. 664, 226–256 (2007)

    ADS  Google Scholar 

  64. Begelman, M. C., Blandford, R. D. & Rees, M. J. Massive black hole binaries in active galactic nuclei. Nature 287, 307–309 (1980)

    ADS  Google Scholar 

  65. Williams, R. E. et al. The Hubble Deep Field: Observations, data reduction, and galaxy photometry. Astron. J. 112, 1335–1389 (1996)

    ADS  Google Scholar 

  66. Williams, R. E. et al. The Hubble Deep Field South: Formulation of the observing campaign. Astron. J. 120, 2735–2746 (2000)

    ADS  Google Scholar 

  67. Beckwith, S. V. W. et al. The Hubble Ultra Deep Field. Astron. J. 132, 1729–1755 (2006)

    CAS  ADS  Google Scholar 

  68. Glazebrook, K., Ellis, R., Santiago, B. & Griffiths, R. The morphological identification of the rapidly evolving population of faint galaxies. Mon. Not. R. Astron. Soc. 275, L19–L22 (1995)

    ADS  Google Scholar 

  69. Abraham, R. G. et al. Galaxy morphology to I = 25 mag in the Hubble Deep Field. Mon. Not. R. Astron. Soc. 279, L47–L52 (1996)

    ADS  Google Scholar 

  70. Odewahn, S. C., Windhorst, R. A., Driver, S. P. & Keel, W. C. Automated morphological classification in deep Hubble Space Telescope UBVI fields: Rapidly and passively evolving faint galaxy populations. Astrophys. J. 472, L13–L16 (1996)

    ADS  Google Scholar 

  71. Driver, S. P., Windhorst, R. A. & Griffiths, R. E. The contribution of late-type/irregulars to the faint galaxy counts from Hubble Space Telescope Medium-Deep Survey images. Astrophys. J. 453, 48–64 (1995)

    ADS  Google Scholar 

  72. Giavalisco, M., Steidel, C. C. & Macchetto, F. D. Hubble Space Telescope imaging of star-forming galaxies at redshifts Z > 3. Astrophys. J. 470, 189–194 (1996)

    ADS  Google Scholar 

  73. van Dokkum, P. G., Franx, M., Kelson, D. D. & Illingworth, G. D. Luminosity evolution of early-type galaxies to Z = 0.83: Constraints on formation epoch and Omega. Astrophys. J. 504, L17–L21 (1998)

    ADS  Google Scholar 

  74. Le Fèvre, O. et al. Hubble Space Telescope imaging of the CFRS and LDSS redshift surveys - IV. Influence of mergers in the evolution of faint field galaxies from z 1. Mon. Not. R. Astron. Soc. 311, 565–575 (2000)

    ADS  Google Scholar 

  75. Dressler, A., Oemler, A. J., Butcher, H. R. & Gunn, J. E. The morphology of distant cluster galaxies. 1: HST observations of CL 0939+4713. Astrophys. J. 430, 107–120 (1994)

    ADS  Google Scholar 

  76. Dressler, A. et al. Evolution since Z = 0.5 of the morphology-density relation for clusters of galaxies. Astrophys. J. 490, 577–591 (1997)

    ADS  Google Scholar 

  77. Ellis, R. S. et al. The homogeneity of spheroidal populations in distant clusters. Astrophys. J. 483, 582–596 (1997)

    ADS  Google Scholar 

  78. Stanford, S. A., Eisenhardt, P. R. & Dickinson, M. The evolution of early-type galaxies in distant clusters. Astrophys. J. 492, 461–479 (1998)

    ADS  Google Scholar 

  79. Couch, W. J., Barger, A. J., Smail, I., Ellis, R. S. & Sharples, R. M. Morphological studies of the galaxy populations in distant ‘Butcher-Oemler’ clusters with the Hubble Space Telescope. II. AC 103, AC 118, and AC 114 at Z = 0.31. Astrophys. J. 497, 188–211 (1998)

    CAS  ADS  Google Scholar 

  80. Postman, M., Lubin, L. M. & Oke, J. B. A study of nine high-redshift clusters of galaxies. II. Photometry, spectra, and ages of clusters 0023+0423 and 1604+4304. Astron. J. 116, 560–583 (1998)

    ADS  Google Scholar 

  81. van Dokkum, P. G., Franx, M., Fabricant, D., Kelson, D. D. & Illingworth, G. D. A high merger fraction in the rich cluster MS 1054–03 at Z = 0.83: Direct evidence for hierarchical formation of massive galaxies. Astrophys. J. 520, L95–L98 (1999)

    ADS  Google Scholar 

  82. Balogh, M. L. et al. Distinguishing local and global influences on galaxy morphology: A Hubble Space telescope comparison of high and low x-ray luminosity clusters. Astrophys. J. 566, 123–136 (2002)

    ADS  Google Scholar 

  83. Lilly, S. et al. Hubble Space Telescope imaging of the CFRS and LDSS redshift surveys. II. Structural parameters and the evolution of disk galaxies to Z approximately 1. Astrophys. J. 500, 75–94 (1998)

    ADS  Google Scholar 

  84. Simard, L. et al. The magnitude-size relation of galaxies out to z 1. Astrophys. J. 519, 563–579 (1999)

    ADS  Google Scholar 

  85. Lowenthal, J. D. et al. Keck spectroscopy of redshift Z approximately 3 Galaxies in the Hubble Deep Field. Astrophys. J. 481, 673–688 (1997)

    CAS  ADS  Google Scholar 

  86. Steidel, C. C., Giavalisco, M., Dickinson, M. & Adelberger, K. L. Spectroscopy of Lyman break galaxies in the Hubble Deep Field. Astron. J. 112, 352–358 (1996)

    ADS  Google Scholar 

  87. Guzman, R. et al. The nature of compact galaxies in the Hubble Deep Field. II. Spectroscopic properties and implications for the evolution of the star formation rate density of the Universe. Astrophys. J. 489, 559–572 (1997)

    ADS  Google Scholar 

  88. Connolly, A. J. et al. Slicing through multicolor space: Galaxy redshifts from broadband photometry. Astron. J. 110, 2655–2664 (1995)

    ADS  Google Scholar 

  89. Hogg, D. W. et al. A blind test of photometric redshift prediction. Astron. J. 115, 1418–1422 (1998)

    ADS  Google Scholar 

  90. Giavalisco, M. et al. The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging. Astrophys. J. 600, L93–L98 (2004)

    CAS  ADS  Google Scholar 

  91. Rix, H.-W. et al. GEMS: Galaxy evolution from morphologies and SEDs. Astrophys. J. Suppl. Ser. 152, 163–173 (2004)

    ADS  Google Scholar 

  92. Davis, M. et al. The All-Wavelength Extended Groth Strip International Survey (AEGIS) data sets. Astrophys. J. 660, L1–L6 (2007)

    ADS  Google Scholar 

  93. Scoville, N. et al. The Cosmic Evolution Survey (COSMOS): Overview. Astrophys. J. Suppl. Ser. 172, 1–8 (2007)

    CAS  ADS  Google Scholar 

  94. Connolly, A. J., Szalay, A. S., Dickinson, M., Subbarao, M. U. & Brunner, R. J. The evolution of the global star formation history as measured from the Hubble Deep Field. Astrophys. J. 486, L11–L14 (1997)

    ADS  Google Scholar 

  95. Sawicki, M. J., Lin, H. & Yee, H. K. C. Evolution of the Galaxy population based on photometric redshifts in the Hubble Deep Field. Astron. J. 113, 1–12 (1997)

    CAS  ADS  Google Scholar 

  96. Fernández-Soto, A., Lanzetta, K. M. & Yahil, A. A new catalog of photometric redshifts in the Hubble Deep Field. Astrophys. J. 513, 34–50 (1999)

    ADS  Google Scholar 

  97. Madau, P. et al. High-redshift galaxies in the Hubble Deep Field: colour selection and star formation history to z 4. Mon. Not. R. Astron. Soc. 283, 1388–1404 (1996)

    ADS  Google Scholar 

  98. Gallart, C., Zoccali, M. & Aparicio, A. The adequacy of stellar evolution models for the interpretation of the color-magnitude diagrams of resolved stellar populations. Annu. Rev. Astron. Astrophys. 43, 387–434 (2005)

    ADS  Google Scholar 

  99. Holland, S., Fahlman, G. G. & Richer, H. B. Deep HST V- and I-Band observations of the halo of M31: Evidence for multiple stellar populations. Astron. J. 112, 1035–1045 (1996)

    CAS  ADS  Google Scholar 

  100. Brown, T. M. et al. Evidence of a significant intermediate-age population in the M31 halo from main-sequence photometry. Astrophys. J. 592, L17–L20 (2003)

    ADS  Google Scholar 

  101. Brown, T. M. et al. The detailed star formation history in the spheroid, outer disk, and tidal stream of the Andromeda galaxy. Astrophys. J. 652, 323–353 (2006)

    CAS  ADS  Google Scholar 

  102. Brown, T. M. et al. The extended star formation history of the Andromeda spheroid at 21 kpc on the minor axis. Astrophys. J. 658, L95–L98 (2007)

    ADS  Google Scholar 

  103. Harris, G. L. H., Harris, W. E. & Poole, G. B. The metallicity distribution in the halo stars of NGC 5128: Implications for galaxy formation. Astron. J. 117, 855–867 (1999)

    CAS  ADS  Google Scholar 

  104. Harris, W. E. & Harris, G. L. H. The halo stars in NGC 5128. III. An inner halo field and the metallicity distribution. Astron. J. 123, 3108–3123 (2002)

    CAS  ADS  Google Scholar 

  105. Barker, M. K., Sarajedini, A., Geisler, D., Harding, P. & Schommer, R. The stellar populations in the outer regions of M33. III. Star formation history. Astron. J. 133, 1138–1160 (2007)

    ADS  Google Scholar 

  106. Williams, B. F. et al. The ACS Nearby Galaxy Survey Treasury I. The star formation history of the M81 outer disk. Preprint at 〈http://arxiv1.library.cornell.edu/abs/0810.2557〉 (2008)

  107. Dohm-Palmer, R. C. et al. Deep Hubble Space Telescope imaging of Sextans A. I. The spatially resolved recent star formation history. Astron. J. 123, 813–831 (2002)

    ADS  Google Scholar 

  108. Richer, H. B. et al. White dwarfs in globular clusters: Hubble Space Telescope observations of M4. Astrophys. J. 484, 741–760 (1997)

    ADS  Google Scholar 

  109. Calamida, A. et al. On the white dwarf cooling sequence of the globular cluster ω Centauri. Astrophys. J. 673, L29–L33 (2008)

    CAS  ADS  Google Scholar 

  110. Hansen, B. M. S. et al. The white dwarf cooling sequence of the globular cluster Messier 4. Astrophys. J. 574, L155–L158 (2002)

    ADS  Google Scholar 

  111. Cool, A. M., Piotto, G. & King, I. R. The main sequence and a white dwarf sequence in the globular cluster NGC 6397. Astrophys. J. 468, 655–662 (1996)

    CAS  ADS  Google Scholar 

  112. Hansen, B. M. S. et al. Hubble Space Telescope observations of the white dwarf cooling sequence of M4. Astrophys. J. Suppl. Ser. 155, 551–576 (2004)

    ADS  Google Scholar 

  113. Bedin, L. R. et al. The white dwarf cooling sequence in NGC 6791. Astrophys. J. 624, L45–L48 (2005)

    CAS  ADS  Google Scholar 

  114. Hansen, B. M. S. et al. The white dwarf cooling sequence of NGC 6397. Astrophys. J. 671, 380–401 (2007)

    CAS  ADS  Google Scholar 

  115. Bedin, L. R. et al. Reaching the end of the white dwarf cooling sequence in NGC 6791 Astrophys . J. 678, 1279–1291 (2008)

    Google Scholar 

  116. Perlmutter, S. et al. Measurements of the cosmological parameters Omega and Lambda from the first seven supernovae at z ≥ 0.35. Astrophys. J. 483, 565–581 (1997)

    ADS  Google Scholar 

  117. Riess, A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)

    ADS  Google Scholar 

  118. Garnavich, P. M. et al. Supernova limits on the cosmic equation of state. Astrophys. J. 509, 74–79 (1998)

    CAS  ADS  Google Scholar 

  119. Perlmutter, S. et al. Measurements of Omega and Lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999)

    MATH  ADS  Google Scholar 

  120. Riess, A. G. et al. The farthest known supernova: Support for an accelerating universe and a glimpse of the epoch of deceleration. Astrophys. J. 560, 49–71 (2001)

    CAS  ADS  Google Scholar 

  121. Knop, R. A. et al. New constraints on Ω M, Ωλ and w from an independent set of 11 high-redshift supernovae observed with the Hubble Space Telescope. Astrophys. J. 598, 102–137 (2003)

    CAS  ADS  Google Scholar 

  122. Riess, A. G. et al. Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665–687 (2004)

    CAS  MATH  ADS  Google Scholar 

  123. Kneib, J.-P., Ellis, R. S., Smail, I., Couch, W. J. & Sharples, R. M. Hubble Space Telescope observations of the lensing cluster Abell 2218. Astrophys. J. 471, 643–656 (1996)

    ADS  Google Scholar 

  124. Squires, G. et al. The dark matter, gas, and galaxy distributions in Abell 2218: A weak gravitational lensing and X-ray analysis. Astrophys. J. 461, 572–586 (1996)

    ADS  Google Scholar 

  125. Hoekstra, H., Franx, M., Kuijken, K. & Squires, G. Weak lensing analysis of CL 1358+62 using Hubble Space Telescope observations. Astrophys. J. 504, 636–660 (1998)

    ADS  Google Scholar 

  126. Hoekstra, H., Franx, M. & Kuijken, K. Hubble Space Telescope weak-lensing study of the z = 0.83 cluster MS 1054–03. Astrophys. J. 532, 88–108 (2000)

    ADS  Google Scholar 

  127. Clowe, D. et al. A direct empirical proof of the existence of dark matter. Astrophys. J. 648, L109–L113 (2006)

    CAS  ADS  Google Scholar 

  128. Bahcall, J. N. et al. The Hubble Space Telescope quasar absorption line key project. I – First observational results, including Lyman-alpha and Lyman-limit systems. Astrophys. J. Suppl. Ser. 87, 1–43 (1993)

    CAS  ADS  Google Scholar 

  129. Morris, S. L., Weymann, R. J., Savage, B. D. & Gilliland, R. L. First results from the Goddard High-Resolution Spectrograph - The Galactic halo and the Ly-alpha forest at low redshift in 3C 273. Astrophys. J. 377, L21–L24 (1991)

    CAS  ADS  Google Scholar 

  130. Penton, S. V., Stocke, J. T. & Shull, J. M. The local Lyα forest. IV. Space Telescope Imaging Spectrograph G140M spectra and results on the distribution and baryon content of H I absorbers. Astrophys. J. Suppl. Ser. 152, 29–62 (2004)

    CAS  ADS  Google Scholar 

  131. Williger, G. M. et al. The low-redshift Lyα forest toward PKS 0405–123. Astrophys. J. 636, 631–653 (2006)

    CAS  ADS  Google Scholar 

  132. Lehner, N. et al. Physical properties, baryon content, and evolution of the Lyα Forest: New insights from high-resolution observations at z ≥ 0:4. Astrophys. J. 658, 680–709 (2007)

    CAS  ADS  Google Scholar 

  133. Lanzetta, K. M., Bowen, D. V., Tytler, D. & Webb, J. K. The gaseous extent of galaxies and the origin of Lyman-alpha absorption systems: A survey of galaxies in the fields of Hubble Space Telescope spectroscopic target QSOs. Astrophys. J. 442, 538–568 (1995)

    CAS  ADS  Google Scholar 

  134. Stocke, J. T., Shull, J. M., Penton, S., Donahue, M. & Carilli, C. The local LY alpha forest: Association of clouds with superclusters and voids. Astrophys. J. 451, 24–43 (1995)

    ADS  Google Scholar 

  135. Le Brun, V., Bergeron, J., Boisse, P. & Deharveng, J. M. The nature of intermediate-redshift damped Lyα absorbers. Astron. Astrophys. 321, 733–748 (1997)

    ADS  Google Scholar 

  136. Steidel, C. C., Dickinson, M., Meyer, D. M., Adelberger, K. L. & Sembach, K. R. Quasar absorbing galaxies at z ≥ 1. I. Deep imaging and spectroscopy in the field of 3C 336. Astrophys. J. 480, 568–588 (1997)

    CAS  ADS  Google Scholar 

  137. Chen, H.-W., Lanzetta, K. M., Webb, J. K. & Barcons, X. The gaseous extent of galaxies and the origin of Ly alpha absorption systems. III. Hubble Space Telescope imaging of Ly alpha-absorbing galaxies at z<1. Astrophys. J. 498, 77–94 (1998)

    ADS  Google Scholar 

  138. Tripp, T. M., Lu, L. & Savage, B. D. The relationship between galaxies and low-redshift weak Ly alpha absorbers in the directions of H1821+643 and PG 1116+215. Astrophys. J. 508, 200–231 (1998)

    CAS  ADS  Google Scholar 

  139. Tripp, T. M., Savage, B. D. & Jenkins, E. B. Intervening O VI quasar absorption systems at low redshift: A significant baryon reservoir. Astrophys. J. 534, L1–L5 (2000)

    CAS  PubMed  ADS  Google Scholar 

  140. Davé, R. et al. Baryons in the warm-hot intergalactic medium. Astrophys. J. 552, 473–483 (2001)

    ADS  Google Scholar 

  141. Sembach, K. R. et al. Highly ionized high-velocity gas in the vicinity of the Galaxy. Astrophys. J. Suppl. Ser. 146, 165–208 (2003)

    CAS  ADS  Google Scholar 

  142. Nicastro, F. et al. The far-ultraviolet signature of the ‘missing’ baryons in the Local Group of galaxies. Nature 421, 719–721 (2003)

    CAS  PubMed  ADS  Google Scholar 

  143. Savage, B. D. & Sembach, K. R. Interstellar abundances from absorption-line observations with the Hubble Space Telescope. Annu. Rev. Astron. Astrophys. 34, 279–330 (1996)

    CAS  ADS  Google Scholar 

Download references

Acknowledgements

The author is happy to acknowledge many discussions with her colleagues, including H.-W. Rix, E. Bell, D. Hogg, A. Burgasser, G. Laughlin, S. Anderson, N. Reid, D. Schneider, D. Soderblom, S. Sigurdsen, J. Rigby, P. Plait, M. Livio, J. Wisniewski, and the readers of Cosmic Variance. She also thanks the staff at the Max-Planck-Institut für Astronomie for their hospitality while this article was being written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julianne J. Dalcanton.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalcanton, J. 18 years of science with the Hubble Space Telescope. Nature 457, 41–50 (2009). https://doi.org/10.1038/nature07621

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07621

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing