Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Measured long-range repulsive Casimir–Lifshitz forces

Abstract

Quantum fluctuations create intermolecular forces that pervade macroscopic bodies1,2,3. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces4. However, as recognized in the theories of Casimir, Polder and Lifshitz5,6,7, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies8,9,10,11. Here we show experimentally that, in accord with theoretical prediction12, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir–Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction13,14,15.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Repulsive quantum electrodynamical forces can exist for two materials separated by a fluid.
Figure 2: Experimental set-up and deflection data.
Figure 3: Attractive and repulsive Casimir–Lifshitz force measurements.

References

  1. Milonni, P. W. The Quantum Vacuum: An Introduction to Quantum Electrodynamics (Academic, 1993)

    Google Scholar 

  2. Parsegian, V. A. van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge Univ. Press, 2006)

    Google Scholar 

  3. Ball, P. Feel the force. Nature 447, 772–774 (2007)

    ADS  CAS  Article  Google Scholar 

  4. London, F. The general theory of molecular forces. Trans. Faraday Soc. 33, 8–26 (1937)

    CAS  Article  Google Scholar 

  5. Casimir, H. B. G. On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793–795 (1948)

    MATH  Google Scholar 

  6. Casimir, H. B. G. & Polder, D. The influence of retardation on the London-van der Waals forces. Phys. Rev. 73, 360–372 (1948)

    ADS  CAS  Article  Google Scholar 

  7. Lifshitz, E. M. The theory of molecular attractive forces between solids. Sov. Phys. JETP 2, 73–83 (1956)

    Google Scholar 

  8. Derjaguin, B. V., Abrikosova, I. I. & Lifshitz, E. M. Direct measurement of molecular attraction between solids separated by a narrow gap. Q. Rev. Chem. Soc. 10, 295–329 (1956)

    Article  Google Scholar 

  9. van Blokland, P. H. G. M. & Overbeek, J. T. G. van der Waals forces between objects covered with a chrome layer. J. Chem. Soc. Faraday Trans. I 74, 2637–2651 (1978)

    CAS  Article  Google Scholar 

  10. Lamoreaux, S. K. Demonstration of the Casimir force in the 0.6 to 6 µm range. Phys. Rev. Lett. 78, 5–8 (1997)

    ADS  CAS  Article  Google Scholar 

  11. Munday, J. N. & Capasso, F. Precision measurement of the Casimir-Lifshitz force in a fluid. Phys. Rev. A 75, 060102(R) (2007)

    ADS  Article  Google Scholar 

  12. Dzyaloshinskii, I. E., Lifshitz, E. M. & Pitaevskii, L. P. The general theory of van der Waals forces. Adv. Phys. 10, 165–209 (1961)

    ADS  MathSciNet  Article  Google Scholar 

  13. Capasso, F., Munday, J. N., Iannuzzi, D. & Chan, H. B. Casimir forces and quantum electrodynamical torques: Physics and nanomechanics. IEEE J. Select. Top. Quant. Electron. 13, 400–414 (2007)

    ADS  CAS  Article  Google Scholar 

  14. Iannuzzi, D., Munday, J. & Capasso, F. Ultra-low friction configuration. US Patent Application US20070066494 (filed, 19 September 2005)

  15. Feiler, A. A., Bergstrom, L. & Rutland, M. W. Superlubricity using repulsive van der Waals forces. Langmuir 24, 2274–2276 (2008)

    CAS  Article  Google Scholar 

  16. Hamaker, H. C. The London – van Der Waals attraction between spherical particles. Physica 4, 1058–1072 (1937)

    ADS  CAS  Article  Google Scholar 

  17. Israelachvili, J. N. Intermolecular and Surface Forces (Academic, 1992)

    Google Scholar 

  18. Mohideen, U. & Roy, A. Precision measurement of the Casimir force from 0.1 to 0.9 µm. Phys. Rev. Lett. 81, 4549–4552 (1998)

    ADS  CAS  Article  Google Scholar 

  19. Bressi, G., Carugno, G., Onofrio, R. & Ruoso, G. Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev. Lett. 88, 041804 (2002)

    ADS  CAS  Article  Google Scholar 

  20. Chan, H. B., Aksyuk, V. A., Kleiman, R. N., Bishop, D. J. & Capasso, F. Quantum mechanical actuation of microelectromechanical systems by the Casimir force. Science 291, 1941–1944 (2001)

    ADS  CAS  Article  Google Scholar 

  21. Lee, S. & Sigmund, W. M. Repulsive van der Waals forces for silica and alumina. J. Colloid Interface Sci. 243, 365–369 (2001)

    ADS  CAS  Article  Google Scholar 

  22. Lee, S. & Sigmund, W. AFM study of repulsive van der Waals forces between Teflon AF thin film and silica or alumina. J. Colloids Surf. A 204, 43–50 (2002)

    CAS  Article  Google Scholar 

  23. Milling, A., Mulvaney, P. & Larson, I. Direct measurement of repulsive van der Waals interactions using an atomic force microscope. J. Colloid Interface Sci. 180, 460–465 (1996)

    ADS  CAS  Article  Google Scholar 

  24. Meurk, A., Luckham, P. F. & Bergstrom, L. Direct measurement of repulsive and attractive van der Waals forces between inorganic materials. Langmuir 13, 3896–3899 (1997)

    CAS  Article  Google Scholar 

  25. Graham, N. et al. The Dirichlet Casimir problem. Nucl. Phys. B 677, 379–404 (2004)

    ADS  Article  Google Scholar 

  26. Leonhardt, U. & Philbin, T. G. Quantum levitation by left-handed metamaterials. N. J. Phys. 9, 254 (2007)

    Article  Google Scholar 

  27. Sabisky, E. S. & Anderson, C. H. Verification of the Lifshitz theory of the van der Waals potential using liquid-helium films. Phys. Rev. A 7, 790–806 (1973)

    ADS  Article  Google Scholar 

  28. Munday, J. N., Capasso, F., Parsegian, V. A. & Bezrukov, S. M. Measurements of the Casimir-Lifshitz force in fluids: The effect of electrostatic forces and Debye screening. Phys. Rev. A 78, 032109 (2008)

    ADS  Article  Google Scholar 

  29. Hertlein, C., Helden, L., Gambassi, A., Dietrich, S. & Bechinger, C. Direct measurement of critical Casimir forces. Nature 451, 172–175 (2008)

    ADS  CAS  Article  Google Scholar 

  30. Bschorr, O. The force between two parallel rigid plates due to the radiation pressure of phonons. J. Acoust. Soc. Am. 106, 3730–3731 (1999)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank D. Iannuzzi, R. Podgornik, J. Zimmerberg, S. M. Bezrukov and M. B. Romanowsky for discussions. This project was partially supported by the Center for Nanoscale Systems at Harvard University, and by the Intramural Research Program of the NIH, Eunice Kennedy Shriver National Institute of Child Health and Human Development. J.N.M. acknowledges support from the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Capasso.

Supplementary information

Supplementary Information

This file contains Supplementary Data, Supplementary Figures S1-S4 with Legends and Supplementary References (PDF 1923 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Munday, J., Capasso, F. & Parsegian, V. Measured long-range repulsive Casimir–Lifshitz forces. Nature 457, 170–173 (2009). https://doi.org/10.1038/nature07610

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07610

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing