Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Artificial nanopores that mimic the transport selectivity of the nuclear pore complex


Nuclear pore complexes (NPCs) act as effective and robust gateways between the nucleus and the cytoplasm, selecting for the passage of particular macromolecules across the nuclear envelope. NPCs comprise an elaborate scaffold that defines a 30 nm diameter passageway connecting the nucleus and the cytoplasm. This scaffold anchors proteins termed ‘phenylalanine-glycine’ (FG)-nucleoporins, the natively disordered domains of which line the passageway and extend into its lumen1. Passive diffusion through this lined passageway is hindered in a size-dependent manner. However, transport factors and their cargo-bound complexes overcome this restriction by transient binding to the FG-nucleoporins2,3,4,5,6,7,8,9,10. To test whether a simple passageway and a lining of transport-factor-binding FG-nucleoporins are sufficient for selective transport, we designed a functionalized membrane that incorporates just these two elements. Here we demonstrate that this membrane functions as a nanoselective filter, efficiently passing transport factors and transport-factor–cargo complexes that specifically bind FG-nucleoporins, while significantly inhibiting the passage of proteins that do not. This inhibition is greatly enhanced when transport factor is present. Determinants of selectivity include the passageway diameter, the length of the nanopore region coated with FG-nucleoporins, the binding strength to FG-nucleoporins, and the antagonistic effect of transport factors on the passage of proteins that do not specifically bind FG-nucleoporins. We show that this artificial system faithfully reproduces key features of trafficking through the NPC, including transport-factor-mediated cargo import.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Design and operation of the NPC mimic.
Figure 2: Selective trafficking of transport factors and cargo through the nanopores.
Figure 3: Presence of transport factor enhances the selectivity of FG-nucleoporin-coated membranes.
Figure 4: The effect of pore geometry and FG-nucleoporin binding strength on transport.


  1. Alber, F. et al. The molecular architecture of the nuclear pore complex. Nature 450, 695–701 (2007)

    Article  ADS  CAS  Google Scholar 

  2. Macara, I. G. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570–594 (2001)

    Article  CAS  Google Scholar 

  3. Peters, R. Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality. Traffic 6, 421–427 (2005)

    Article  CAS  Google Scholar 

  4. Ribbeck, K. & Gorlich, D. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J. 21, 2664–2671 (2002)

    Article  CAS  Google Scholar 

  5. Rout, M. P., Aitchison, J. D., Magnasco, M. O. & Chait, B. T. Virtual gating and nuclear transport: the hole picture. Trends Cell Biol. 13, 622–628 (2003)

    Article  CAS  Google Scholar 

  6. Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000)

    Article  CAS  Google Scholar 

  7. Frey, S. & Gorlich, D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130, 512–523 (2007)

    Article  CAS  Google Scholar 

  8. Lim, R. Y. H. et al. Nanomechanical basis of selective gating by the nuclear pore complex. Science 318, 640–643 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Lim, R. Y. H. et al. Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc. Natl Acad. Sci. USA 103, 9512–9517 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Krishnan, V. et al. Intramolecular cohesion of coils mediated by phenylalanine-glycine motifs in the natively unfolded domain of a nucleoporin. PLOS Comput. Biol. 4, e1000145 (2008)

    Article  CAS  Google Scholar 

  11. Lakshmi, B. B. & Martin, C. R. Enantioseparation using apoenzymes immobilized in a porous polymeric membrane. Nature 388, 758–760 (1997)

    Article  ADS  CAS  Google Scholar 

  12. Lee, S. B. et al. Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 296, 2198–2200 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Jirage, K. B., Hulteen, J. C. & Martin, C. R. Effect of thiol chemisorption on the transport properties of gold nanotubule membranes. Anal. Chem. 71, 4913–4918 (1999)

    Article  CAS  Google Scholar 

  14. Iqbal, S. M., Akin, D. & Bashir, R. Solid-state nanopore channels with DNA selectivity. Nature Nanotechnol. 2, 243–248 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Caspi, Y., Zbaida, D., Cohen, H. & Elbaum, M. Synthetic mimic of selective transport through the nuclear pore complex. Nano Lett. 8, 3728–3734 (2008)

    Article  ADS  CAS  Google Scholar 

  16. Strawn, L. A., Shen, T. X., Shulga, N., Goldfarb, D. S. & Wente, S. R. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nature Cell Biol. 6, 197–206 (2004)

    Article  CAS  Google Scholar 

  17. Peters, R. Optical single transporter recording: transport kinetics in microarrays of membrane patches. Annu. Rev. Biophys. Biomol. Struct. 32, 47–67 (2003)

    Article  CAS  Google Scholar 

  18. Bayliss, R., Littlewood, T., Strawn, L. A., Wente, S. R. & Stewart, M. GLFG and FxFG nucleoporins bind to overlapping sites on importin-β. J. Biol. Chem. 277, 50597–50606 (2002)

    Article  CAS  Google Scholar 

  19. Seedorf, M., Damelin, M., Kahana, J., Taura, T. & Silver, P. A. Interactions between a nuclear transporter and a subset of nuclear pore complex proteins depend on Ran GTPase. Mol. Cell. Biol. 19, 1547–1557 (1999)

    Article  CAS  Google Scholar 

  20. Koerner, C., Guan, T., Gerace, L. & Cingolani, G. Synergy of silent and hot spot mutations in importin beta reveals a dynamic mechanism for recognition of a nuclear localization signal. J. Biol. Chem. 278, 16216–16221 (2003)

    Article  CAS  Google Scholar 

  21. Gilchrist, D., Mykytka, B. & Rexach, M. Accelerating the rate of disassembly of karyopherin-cargo complexes. J. Biol. Chem. 277, 18161–18172 (2002)

    Article  CAS  Google Scholar 

  22. Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA 100, 2450–2455 (2003)

    Article  ADS  CAS  Google Scholar 

  23. Dutta, A. K. & Belfort, G. Adsorbed gels versus brushes: viscoelastic differences. Langmuir 23, 3088–3094 (2007)

    Article  CAS  Google Scholar 

  24. Zilman, A., Di Talia, S., Chait, B. T., Rout, M. P. & Magnasco, M. O. Efficiency, selectivity, and robustness of nucleocytoplasmic transport. PLOS Comput. Biol. 3, 1281–1290 (2007)

    Article  CAS  Google Scholar 

  25. Morrison, J., Yang, J. C., Stewart, M. & Neuhaus, D. Solution NMR study of the interaction between NTF2 and nucleoporin FxFG repeats. J. Mol. Biol. 333, 587–603 (2003)

    Article  CAS  Google Scholar 

  26. Clarkson, W. D. et al. Nuclear protein import is decreased by engineered mutants of nuclear transport factor 2 (NTF2) that do not bind GDP-Ran. J. Mol. Biol. 272, 716–730 (1997)

    Article  CAS  Google Scholar 

  27. Strawn, L. A., Shen, T. X. & Wente, S. R. The GLFG regions of Nup116p and Nup100p serve as binding sites for both Kap95p and Mex67p at the nuclear pore complex. J. Biol. Chem. 276, 6445–6452 (2001)

    Article  CAS  Google Scholar 

  28. Shulga, N. & Goldfarb, D. S. Binding dynamics of structural nucleoporins govern nuclear pore complex permeability and may mediate channel gating. Mol. Cell. Biol. 23, 534–542 (2003)

    Article  CAS  Google Scholar 

  29. Leslie, D. M. et al. Characterization of karyopherin cargoes reveals unique mechanisms of kap121p-mediated nuclear import. Mol. Cell. Biol. 24, 8487–8503 (2004)

    Article  CAS  Google Scholar 

Download references


We thank E. Coutavas, S. Darst, G. Belfort and C. Martin for suggestions and comments, G. Blobel for use of his confocal microscope, D. Phillips for use of his sputtering device, P. Nahirney and A. Labissiere for electron microscopy work, J. M. Crawford for amino acid analysis, D. Gadsby and A. Gulyas Kovacs for providing Xenopus oocytes, J. Aitchison for Kap95–GST and Kap121–GST plasmids, K. Zerf and M. Kahms for providing RanGDP, K. Zerf for NTF2–YFP cloning assistance, R. Mironska for help in preparing measuring chambers, and other members of the Peters, Rout and Chait laboratories for their assistance. We gratefully acknowledge support from the NIH and DoE. J.T.-N. is a HHMI pre-doctoral fellow.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Brian T. Chait.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Data, Supplementary Figures1-12 with Legends, Supplementary Tables 1-7 and Supplementary References (PDF 3502 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jovanovic-Talisman, T., Tetenbaum-Novatt, J., McKenney, A. et al. Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature 457, 1023–1027 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing