Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antigenic variation in Giardia lamblia is regulated by RNA interference

Abstract

Giardia lamblia (also called Giardia intestinalis) is one of the most common intestinal parasites of humans. To evade the host’s immune response, Giardia undergoes antigenic variation—a process that allows the parasite to develop chronic and recurrent infections. From a repertoire of 190 variant-specific surface protein (VSP)-coding genes, Giardia expresses only one VSP on the surface of each parasite at a particular time, but spontaneously switches to a different VSP by unknown mechanisms. Here we show that regulation of VSP expression involves a system comprising RNA-dependent RNA polymerase, Dicer and Argonaute, known components of the RNA interference machinery. Clones expressing a single surface antigen efficiently transcribe several VSP genes but only accumulate transcripts encoding the VSP to be expressed. Detection of antisense RNAs corresponding to the silenced VSP genes and small RNAs from the silenced but not for the expressed vsp implicate the RNA interference pathway in antigenic variation. Remarkably, silencing of Dicer and RNA-dependent RNA polymerase leads to a change from single to multiple VSP expression in individual parasites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Several VSP genes are simultaneously transcribed in Giardia.
Figure 2: Dicer activity and detection of VSP small RNAs in Giardia.
Figure 3: Expression of different VSPs in Giardia rdrp - and dicer -knockdown transgenic trophozoites.

Similar content being viewed by others

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Data deposits

The GenBank accession numbers for Giardia Dicer, RdRP and AGO are AY142144, AF293414 and AY142143, respectively.

References

  1. Deitsch, K. W., Moxon, E. R. & Wellems, T. E. Shared themes of antigenic variation and virulence in bacterial, protozoal, and fungal infections. Microbiol. Mol. Biol. Rev. 61, 281–293 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Adam, R. D. Biology of Giardia lamblia. Clin. Microbiol. Rev. 14, 447–475 (2001)

    Article  CAS  Google Scholar 

  3. Nash, T. E. Antigenic variation in Giardia lamblia and the host’s immune response. Phil. Trans. R. Soc. Lond. B 352, 1369–1375 (1997)

    Article  ADS  CAS  Google Scholar 

  4. Morrison, H. G. et al. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317, 1921–1926 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Adam, R. D. et al. Antigenic variation of a cysteine-rich protein in Giardia lamblia. J. Exp. Med. 167, 109–118 (1988)

    Article  CAS  Google Scholar 

  6. Nash, T. E., Mowatt, M. R. & Conrad, J. T. Variant-specific surface protein switching in Giardia lamblia. Infect. Immun. 69, 1922–1923 (2001)

    Article  CAS  Google Scholar 

  7. Nash, T. E., Alling, D. W., Merritt, J. W. & Conrad, J. T. Frequency of variant antigens in Giardia lamblia. Exp. Parasitol. 71, 415–421 (1990)

    Article  CAS  Google Scholar 

  8. Kulakova, L. S., Conrad, J. T. & Nash, T. E. Epigenetic mechanisms are involved in the control of Giardia lamblia antigenic variation. Mol. Microbiol. 61, 1533–1542 (2006)

    Article  CAS  Google Scholar 

  9. Cogoni, C. & Macino, G. Homology-dependent gene silencing in plants and fungi: a number of variations on the same theme. Curr. Opin. Microbiol. 2, 657–662 (1999)

    Article  CAS  Google Scholar 

  10. Fagard, M., Boutet, S., Morel, J. B., Bellini, C. & Vaucheret, H. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc. Natl Acad. Sci. USA 97, 11650–11654 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Elmendorf, H. G., Singer, S. M. & Nash, T. E. The abundance of sterile transcripts in Giardia lamblia. Nucleic Acids Res. 29, 4674–4683 (2001)

    Article  CAS  Google Scholar 

  12. Hutvágner, G. & Zamore, P. D. RNAi: nature abhors a double-strand. Curr. Opin. Genet. Dev. 12, 225–232 (2002)

    Article  Google Scholar 

  13. Pak, J. F. et al. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315, 241–244 (2007)

    Article  ADS  CAS  Google Scholar 

  14. Dougherty, W. G. P. Transgenes and gene suppression: telling us something new? Curr. Opin. Cell Biol. 7, 399–405 (1995)

    Article  CAS  Google Scholar 

  15. Zamore, P. D. Ancient pathways programmed by small RNAs. Science 296, 1265–1269 (2002)

    Article  ADS  CAS  Google Scholar 

  16. White, T. C. & Wang, C. C. RNA dependent RNA polymerase activity associated with the double-stranded RNA virus of Giardia lamblia. Nucleic Acids Res. 18, 553–559 (1990)

    Article  CAS  Google Scholar 

  17. Green-Willms, N. S., Fox, T. D. & Costanzo, M. C. Functional interactions between yeast mitochondrial ribosomes and mRNA 5′ untranslated leaders. Mol. Cell. Biol. 18, 1826–1834 (1998)

    Article  CAS  Google Scholar 

  18. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Macrae, I. J. et al. Structural basis for double-stranded RNA processing by Dicer. Science 311, 195–198 (2006)

    Article  ADS  CAS  Google Scholar 

  20. Nykanen, A., Haley, B. & Zamore, P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321 (2001)

    Article  CAS  Google Scholar 

  21. Höck, J. M. The Argonaute protein family. Genome Biol. 9, 210 (2008)

    Article  Google Scholar 

  22. Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol. Cell 9, 315–327 (2002)

    Article  CAS  Google Scholar 

  23. Touz, M. C., Gottig, N., Nash, T. E. & Lujan, H. D. Identification and characterization of a novel secretory granule calcium-binding protein from the early branching eukaryote Giardia lamblia. J. Biol. Chem. 277, 50557–50563 (2002)

    Article  CAS  Google Scholar 

  24. Elmendorf, H. G. et al. Initiator and upstream elements in the α2-tubulin promoter of Giardia lamblia. Mol. Biochem. Parasitol. 113, 157–169 (2001)

    Article  CAS  Google Scholar 

  25. Ullu, E. L., Lujan, H. D. & Tschudi, C. Small sense and antisense RNAs derived from a telomeric retroposon family in Giardia intestinalis. Euk. Cell 4, 1155–1157 (2005)

    Article  CAS  Google Scholar 

  26. Tam, O. H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–543 (2008)

    Article  ADS  CAS  Google Scholar 

  27. Watanabe, T. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 544–547 (2008)

    Article  ADS  Google Scholar 

  28. von Allmen, N., Bienz, M., Hemphill, A. & Muller, N. Quantitative assessment of sense and antisense transcripts from genes involved in antigenic variation (vsp genes) and encystation (cwp 1 gene) of Giardia lamblia clone GS/M-83–H7. Parasitology 130, 389–396 (2005)

    Article  CAS  Google Scholar 

  29. Lujan, H. D., Mowatt, M. R. & Nash, T. E. Molecular mechanisms of Giardia lamblia differentiation into cysts. Microbiol. Mol. Biol. Rev. 61, 294–304 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kloc, M. et al. RNA localization and germ cell determination in Xenopus. Int. Rev. Cytol. 203, 63–91 (2001)

    Article  CAS  Google Scholar 

  31. Jambhekar, A. D. et al. Cis-acting determinants of asymmetric, cytoplasmic RNA transport. RNA 13, 625–642 (2007)

    Article  CAS  Google Scholar 

  32. Nash, T. E., Aggarwal, A., Adam, R. D., Conrad, J. T. & Merritt, J. W. Antigenic variation in Giardia lamblia. J. Immunol. 141, 636–641 (1988)

    CAS  PubMed  Google Scholar 

  33. Lujan, H. D., Mowatt, M. R., Conrad, J. T., Bowers, B. & Nash, T. E. Identification of a novel Giardia lamblia cyst wall protein with leucine-rich repeats. J. Biol. Chem. 270, 29307–29313 (1995)

    Article  CAS  Google Scholar 

  34. Yee, J., Mowatt, M. R., Dennis, P. P. & Nash, T. E. Transcriptional analysis of the glutamate dehydrogenase gene in the primitive eukaryote, Giardia lamblia. J. Biol. Chem. 275, 11432–11439 (2000)

    Article  CAS  Google Scholar 

  35. Hutvagner, G., Mlynarova, L. & Nap, J. P. Detailed characterization of the posttranscriptional gene-silencing-related small RNA in a GUS gene-silenced tobacco. RNA 6, 1445–1454 (2000)

    Article  CAS  Google Scholar 

  36. Ngo, H., Tschudi, C., Gull, K. & Ullu, E. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc. Natl Acad. Sci. USA 95, 14687–14692 (1998)

    Article  ADS  CAS  Google Scholar 

  37. Singer, S. M., Yee, J. & Nash, T. E. Episomal and integrated maintenance of foreign DNA in Giardia lamblia. Mol. Biochem. Parasitol. 92, 59–69 (1998)

    Article  CAS  Google Scholar 

  38. Yee, J. & Nash, T. E. Transient transfection and expression of firefly luciferase in Giardia lamblia. Proc. Natl Acad. Sci. USA 92, 5615–5619 (1995)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Gottig and M. E. Alvarez for technical support. This work was supported by grants from the Agencia Nacional para la Promoción de la Ciencia y la Tecnología (ANPCYT), the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), the Universidad Católica de Córdoba (UCC), the Howard Hughes Medical Institute (HHMI), and the European Union CONTENT project. H.D.L. is an HHMI International Research Scholar and a Member of the Scientific Investigator’s Career of the CONICET.

Author Contributions C.G.P. knocked down the expression of AGO and VSP9B10, expressed VSPH7 in WB strain trophozoites, performed confocal immunofluorescence assays, northern blots and quantitative RT–PCRs, and cloned and sequenced small RNAs; I.S. knocked down the expression of Dicer and RdRP, performed nuclear run-on and Dicer activity experiments, and cloned and sequenced RdRP, Dicer and VSP genes; R.Q. performed immunofluorescence assays, quantitative RT–PCRs and flow cytometry experiments; P.G.C. performed DNA methylation experiments; and F.D.R., E.V.E. and A.S. generated different monoclonal antibodies and performed immunofluorescence and immunoblotting assays. C.G.P., I.S. and H.D.L wrote this manuscript. H.D.L. conceived and coordinated the project. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo D. Luján.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-10 with Legends, Supplementary Table 1, Supplementary Methods and Supplementary References (PDF 3257 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prucca, C., Slavin, I., Quiroga, R. et al. Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature 456, 750–754 (2008). https://doi.org/10.1038/nature07585

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07585

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing