Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quality control by the ribosome following peptide bond formation

Abstract

The overall fidelity of protein synthesis has been thought to rely on the combined accuracy of two basic processes: the aminoacylation of transfer RNAs with their cognate amino acid by the aminoacyl-tRNA synthetases, and the selection of cognate aminoacyl-tRNAs by the ribosome in cooperation with the GTPase elongation factor EF-Tu. These two processes, which together ensure the specific acceptance of a correctly charged cognate tRNA into the aminoacyl (A) site, operate before peptide bond formation. Here we report the identification of an additional mechanism that contributes to high fidelity protein synthesis after peptidyl transfer, using a well-defined in vitro bacterial translation system. In this retrospective quality control step, the incorporation of an amino acid from a non-cognate tRNA into the growing polypeptide chain leads to a general loss of specificity in the A site of the ribosome, and thus to a propagation of errors that results in abortive termination of protein synthesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Unusual behaviour by RF2 after a miscoding event.
Figure 2: Abortive termination reaction is stimulated by the class II RF3 and is general for all P-site mismatches.
Figure 3: A single miscoding event promotes iterated errors in tRNA selection.
Figure 4: Iterated miscoding results in doubly mismatched complexes, where release catalysis is dramatically promoted.
Figure 5: An initial miscoding event results in an overall drop in yield of full-length peptides.

References

  1. Edelmann, P. & Gallant, J. Mistranslation in E. coli . Cell 10, 131–137 (1977)

    Article  CAS  Google Scholar 

  2. Bouadloun, F., Donner, D. & Kurland, C. G. Codon-specific missense errors in vivo . EMBO J. 2, 1351–1356 (1983)

    Article  CAS  Google Scholar 

  3. Gromadski, K. B. & Rodnina, M. V. Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Mol. Cell 13, 191–200 (2004)

    Article  CAS  Google Scholar 

  4. Guth, E. C. & Francklyn, C. S. Kinetic discrimination of tRNA identity by the conserved motif 2 loop of a class II aminoacyl-tRNA synthetase. Mol. Cell 25, 531–542 (2007)

    Article  CAS  Google Scholar 

  5. Schmidt, E. & Schimmel, P. Mutational isolation of a sieve for editing in a transfer RNA synthetase. Science 264, 265–267 (1994)

    Article  ADS  CAS  Google Scholar 

  6. Hopfield, J. J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl Acad. Sci. USA 71, 4135–4139 (1974)

    Article  ADS  CAS  Google Scholar 

  7. Ninio, J. Kinetic amplification of enzyme discrimination. Biochimie 57, 587–595 (1975)

    Article  CAS  Google Scholar 

  8. Soll, D. The accuracy of aminoacylation—ensuring the fidelity of the genetic code. Experientia 46, 1089–1096 (1990)

    Article  CAS  Google Scholar 

  9. Szaflarski, W. et al. New features of the ribosome and ribosomal inhibitors: non-enzymatic recycling, misreading and back-translocation. J. Mol. Biol. 380, 193–205 (2008)

    Article  CAS  Google Scholar 

  10. Jelenc, P. C. & Kurland, C. G. Nucleoside triphosphate regeneration decreases the frequency of translation errors. Proc. Natl Acad. Sci. USA 76, 3174–3178 (1979)

    Article  ADS  CAS  Google Scholar 

  11. Brutlag, D. & Kornberg, A. Enzymatic synthesis of deoxyribonucleic acid. 36. A proofreading function for the 3′ leads to 5′ exonuclease activity in deoxyribonucleic acid polymerases. J. Biol. Chem. 247, 241–248 (1972)

    CAS  PubMed  Google Scholar 

  12. Precup, J. & Parker, J. Missense misreading of asparagine codons as a function of codon identity and context. J. Biol. Chem. 262, 11351–11355 (1987)

    CAS  PubMed  Google Scholar 

  13. Brunelle, J. L., Shaw, J. J., Youngman, E. M. & Green, R. Peptide release on the ribosome depends critically on the 2' OH of the peptidyl-tRNA substrate. RNA 14, 1526–1531 (2008)

    Article  CAS  Google Scholar 

  14. Youngman, E. M., He, S. L., Nikstad, L. J. & Green, R. Stop codon recognition by release factors induces structural rearrangement of the ribosomal decoding center that is productive for peptide release. Mol. Cell 28, 533–543 (2007)

    Article  CAS  Google Scholar 

  15. Dincbas-Renqvist, V. et al. A post-translational modification in the GGQ motif of RF2 from Escherichia coli stimulates termination of translation. EMBO J. 19, 6900–6907 (2000)

    Article  CAS  Google Scholar 

  16. Freistroffer, D. V., Kwiatkowski, M., Buckingham, R. H. & Ehrenberg, M. The accuracy of codon recognition by polypeptide release factors. Proc. Natl Acad. Sci. USA 97, 2046–2051 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Baranov, P. V., Gesteland, R. F. & Atkins, J. F. Recoding: translational bifurcations in gene expression. Gene 286, 187–201 (2002)

    Article  CAS  Google Scholar 

  18. Hartz, D., McPheeters, D. S., Traut, R. & Gold, L. Extension inhibition analysis of translation initiation complexes. Methods Enzymol. 164, 419–425 (1988)

    Article  CAS  Google Scholar 

  19. Brown, C. M., McCaughan, K. K. & Tate, W. P. Two regions of the Escherichia coli 16S ribosomal RNA are important for decoding stop signals in polypeptide chain termination. Nucleic Acids Res. 21, 2109–2115 (1993)

    Article  CAS  Google Scholar 

  20. Katunin, V. I., Muth, G. W., Strobel, S. A., Wintermeyer, W. & Rodnina, M. V. Important contribution to catalysis of peptide bond formation by a single ionizing group within the ribosome. Mol. Cell 10, 339–346 (2002)

    Article  CAS  Google Scholar 

  21. Youngman, E. M., Brunelle, J. L., Kochaniak, A. B. & Green, R. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117, 589–599 (2004)

    Article  CAS  Google Scholar 

  22. Freistroffer, D. V., Pavlov, M. Y., MacDougall, J., Buckingham, R. H. & Ehrenberg, M. Release factor RF3 in E. coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO J. 16, 4126–4133 (1997)

    Article  CAS  Google Scholar 

  23. Marquez, V., Wilson, D. N., Tate, W. P., Triana-Alonso, F. & Nierhaus, K. H. Maintaining the ribosomal reading frame: the influence of the E site during translational regulation of release factor 2. Cell 118, 45–55 (2004)

    Article  CAS  Google Scholar 

  24. Geigenmuller, U. & Nierhaus, K. H. Significance of the third tRNA binding site, the E site, on E. coli ribosomes for the accuracy of translation: an occupied E site prevents the binding of non-cognate aminoacyl-tRNA to the A site. EMBO J. 9, 4527–4533 (1990)

    Article  CAS  Google Scholar 

  25. Sundararajan, A., Michaud, W. A., Qian, Q., Stahl, G. & Farabaugh, P. J. Near-cognate peptidyl-tRNAs promote +1 programmed translational frameshifting in yeast. Mol. Cell 4, 1005–1015 (1999)

    Article  CAS  Google Scholar 

  26. Dong, H., Nilsson, L. & Kurland, C. G. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J. Mol. Biol. 260, 649–663 (1996)

    Article  CAS  Google Scholar 

  27. Manley, J. L. Synthesis and degradation of termination and premature-termination fragments of β-galactosidase in vitro and in vivo . J. Mol. Biol. 125, 407–432 (1978)

    Article  CAS  Google Scholar 

  28. Dong, H. & Kurland, C. G. Ribosome mutants with altered accuracy translate with reduced processivity. J. Mol. Biol. 248, 551–561 (1995)

    Article  CAS  Google Scholar 

  29. Craigen, W. J. & Caskey, C. T. Expression of peptide chain release factor 2 requires high-efficiency frameshift. Nature 322, 273–275 (1986)

    Article  ADS  CAS  Google Scholar 

  30. Jorgensen, F., Adamski, F. M., Tate, W. P. & Kurland, C. G. Release factor-dependent false stops are infrequent in Escherichia coli . J. Mol. Biol. 230, 41–50 (1993)

    Article  CAS  Google Scholar 

  31. Pape, T., Wintermeyer, W. & Rodnina, M. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. EMBO J. 18, 3800–3807 (1999)

    Article  CAS  Google Scholar 

  32. Bartetzko, A. & Nierhaus, K. H. Mg2+/NH4+/polyamine system for polyuridine-dependent polyphenylalanine synthesis with near in vivo characteristics. Methods Enzymol. 164, 650–658 (1988)

    Article  CAS  Google Scholar 

  33. Shaw, J. J. & Green, R. Two distinct components of release factor function uncovered by nucleophile partitioning analysis. Mol. Cell 28, 458–467 (2007)

    Article  CAS  Google Scholar 

  34. Brunelle, J. L., Youngman, E. M., Sharma, D. & Green, R. The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity. RNA 12, 33–39 (2006)

    Article  CAS  Google Scholar 

  35. Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nature Biotechnol. 19, 751–755 (2001)

    Article  CAS  Google Scholar 

  36. Blanchard, S. C., Kim, H. D., Gonzalez, R. L., Puglisi, J. D. & Chu, S. tRNA dynamics on the ribosome during translation. Proc. Natl Acad. Sci. USA 101, 12893–12898 (2004)

    Article  ADS  CAS  Google Scholar 

  37. Zaher, H. S. & Unrau, P. J. T7 RNA polymerase mediates fast promoter-independent extension of unstable nucleic acid complexes. Biochemistry 43, 7873–7880 (2004)

    Article  CAS  Google Scholar 

  38. Moazed, D. & Noller, H. F. Sites of interaction of the CCA end of peptidyl-tRNA with 23S rRNA. Proc. Natl Acad. Sci. USA 88, 3725–3728 (1991)

    Article  ADS  CAS  Google Scholar 

  39. Dorner, S., Brunelle, J. L., Sharma, D. & Green, R. The hybrid state of tRNA binding is an authentic translation elongation intermediate. Nature Struct. Mol. Biol. 13, 234–241 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Cormack, A. Nahvi, A. Buskirk and R. Reed for helpful comments on the manuscript and members of the laboratory for useful discussions. This work was supported by the National Institutes of Health with salary support from Howard Hughes Medical Institute.

Author Contributions H.S.Z. and R.G. designed the experiments and wrote the manuscript. H.S.Z. performed the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Green.

Supplementary information

Supplementary Information

This file contains Supplementary Notes and Supplementary Figures 1-15 with Legends (PDF 2135 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaher, H., Green, R. Quality control by the ribosome following peptide bond formation. Nature 457, 161–166 (2009). https://doi.org/10.1038/nature07582

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07582

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing