Calcium flickers steer cell migration


Directional movement is a property common to all cell types during development and is critical to tissue remodelling and regeneration after damage1,2,3. In migrating cells, calcium has a multifunctional role in directional sensing, cytoskeleton redistribution, traction force generation, and relocation of focal adhesions1,4,5,6,7. Here we visualize high-calcium microdomains (‘calcium flickers’) and their patterned activation in migrating human embryonic lung fibroblasts. Calcium flicker activity is dually coupled to membrane tension (by means of TRPM7, a stretch-activated Ca2+-permeant channel of the transient receptor potential superfamily8) and chemoattractant signal transduction (by means of type 2 inositol-1,4,5-trisphosphate receptors). Interestingly, calcium flickers are most active at the leading lamella of migrating cells, displaying a 4:1 front-to-rear polarization opposite to the global calcium gradient6. When exposed to a platelet-derived growth factor gradient perpendicular to cell movement, asymmetric calcium flicker activity develops across the lamella and promotes the turning of migrating fibroblasts. These findings show how the exquisite spatiotemporal organization of calcium microdomains can orchestrate complex cellular processes such as cell migration.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Calcium flickers in migrating fibroblasts.
Figure 2: Triggering calcium flickers by TRPM7.
Figure 3: Amplifying TRPM7 calcium flickers by store calcium release through type 2 Ins(1,4,5)P 3 receptors.
Figure 4: Traction force generation and calcium flicker activity.
Figure 5: Calcium flickers steer fibroblast turning.


  1. 1

    Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Martin, P. & Parkhurst, S. M. Parallels between tissue repair and embryo morphogenesis. Development 131, 3021–3034 (2004)

    CAS  Article  Google Scholar 

  3. 3

    Werner, S. & Grose, R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 83, 835–870 (2003)

    CAS  Article  Google Scholar 

  4. 4

    Van Haastert, P. J. & Devreotes, P. N. Chemotaxis: signalling the way forward. Nature Rev. Mol. Cell Biol. 5, 626–634 (2004)

    CAS  Article  Google Scholar 

  5. 5

    Pettit, E. J. & Fay, F. S. Cytosolic free calcium and the cytoskeleton in the control of leukocyte chemotaxis. Physiol. Rev. 78, 949–967 (1998)

    CAS  Article  Google Scholar 

  6. 6

    Brundage, R. A., Fogarty, K. E., Tuft, R. A. & Fay, F. S. Calcium gradients underlying polarization and chemotaxis of eosinophils. Science 254, 703–706 (1991)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Lee, J., Ishihara, A., Oxford, G., Johnson, B. & Jacobson, K. Regulation of cell movement is mediated by stretch-activated calcium channels. Nature 400, 382–386 (1999)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Nilius, B., Owsianik, G., Voets, T. & Peters, J. A. Transient receptor potential cation channels in disease. Physiol. Rev. 87, 165–217 (2007)

    CAS  Article  Google Scholar 

  9. 9

    Hahn, K., DeBiasio, R. & Taylor, D. L. Patterns of elevated free calcium and calmodulin activation in living cells. Nature 359, 736–738 (1992)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Stossel, T. P., Fenteany, G. & Hartwig, J. H. Cell surface actin remodeling. J. Cell Sci. 119, 3261–3264 (2006)

    CAS  Article  Google Scholar 

  11. 11

    Robinson, R. C. et al. Domain movement in gelsolin: a calcium-activated switch. Science 286, 1939–1942 (1999)

    CAS  Article  Google Scholar 

  12. 12

    Chew, T. L., Wolf, W. A., Gallagher, P. J., Matsumura, F. & Chisholm, R. L. A fluorescent resonant energy transfer-based biosensor reveals transient and regional myosin light chain kinase activation in lamella and cleavage furrows. J. Cell Biol. 156, 543–553 (2002)

    CAS  Article  Google Scholar 

  13. 13

    Franco, S. J. et al. Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nature Cell Biol. 6, 977–983 (2004)

    CAS  Article  Google Scholar 

  14. 14

    Evans, J. H. & Falke, J. J. Ca2+ influx is an essential component of the positive-feedback loop that maintains leading-edge structure and activity in macrophages. Proc. Natl Acad. Sci. USA 104, 16176–16181 (2007)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Cheng, H. & Lederer, W. J. Calcium sparks. Physiol. Rev. 88, 1491–1545 (2008)

    CAS  Article  Google Scholar 

  16. 16

    Hamill, O. P. & McBride, D. W. The pharmacology of mechanogated membrane ion channels. Pharmacol. Rev. 48, 231–252 (1996)

    CAS  PubMed  Google Scholar 

  17. 17

    Zou, H., Lifshitz, L. M., Tuft, R. A., Fogarty, K. E. & Singer, J. J. Visualization of Ca2+ entry through single stretch-activated cation channels. Proc. Natl Acad. Sci. USA 99, 6404–6409 (2002)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Numata, T., Shimizu, T. & Okada, Y. TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. Am. J. Physiol. Cell Physiol. 292, C460–C467 (2007)

    CAS  Article  Google Scholar 

  19. 19

    Thomas, D. et al. Microscopic properties of elementary Ca2+ release sites in non-excitable cells. Curr. Biol. 10, 8–15 (2000)

    CAS  Article  Google Scholar 

  20. 20

    Patterson, R. L., Boehning, D. & Snyder, S. H. Inositol 1,4,5-trisphosphate receptors as signal integrators. Annu. Rev. Biochem. 73, 437–465 (2004)

    CAS  Article  Google Scholar 

  21. 21

    Horwitz, A. R. & Parsons, J. T. Cell migration—movin’ on. Science 286, 1102–1103 (1999)

    CAS  Article  Google Scholar 

  22. 22

    Pierschbacher, M. D. & Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30–33 (1984)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Gomez, T. M., Robles, E., Poo, M. & Spitzer, N. C. Filopodial calcium transients promote substrate-dependent growth cone turning. Science 291, 1983–1987 (2001)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Shu, S., Liu, X. & Korn, E. D. Blebbistatin and blebbistatin-inactivated myosin II inhibit myosin II-independent processes in Dictyostelium. Proc. Natl Acad. Sci. USA 102, 1472–1477 (2005)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Price, L. S. et al. Calcium signaling regulates translocation and activation of Rac. J. Biol. Chem. 278, 39413–39421 (2003)

    CAS  Article  Google Scholar 

  26. 26

    Weiner, O. D. et al. A PtdInsP3- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nature Cell Biol. 4, 509–513 (2002)

    CAS  Article  Google Scholar 

  27. 27

    van Haastert, P. J., Keizer-Gunnink, I. & Kortholt, A. Essential role of PI3-kinase and phospholipase A2 in Dictyostelium discoideum chemotaxis. J. Cell Biol. 177, 809–816 (2007)

    CAS  Article  Google Scholar 

  28. 28

    Hawkins, P. T. et al. PDGF stimulates an increase in GTP–Rac via activation of phosphoinositide 3-kinase. Curr. Biol. 5, 393–403 (1995)

    CAS  Article  Google Scholar 

  29. 29

    Claesson-Welsh, L. Platelet-derived growth factor receptor signals. J. Biol. Chem. 269, 32023–32026 (1994)

    CAS  PubMed  Google Scholar 

  30. 30

    Ware, M. F., Wells, A. & Lauffenburger, D. A. Epidermal growth factor alters fibroblast migration speed and directional persistence reciprocally and in a matrix-dependent manner. J. Cell Sci. 111, 2423–2432 (1998)

    CAS  PubMed  Google Scholar 

Download references


We thank I. C. Bruce, X. Zhu, J. J. Ma, H. Q. Cao, J. Liu, M. Zheng, X. D. Fu and R. P. Xiao for discussions, and M. Gorospe, Z. C. Liang, Q. Du, C. M. Cao, H. Huang, X. M. Lan, N. Lin, Y. R. Wang, R. S. Song and Y. Zhang for technical support. Special thanks to X. D. Fu for making his laboratory facility available to us. This work was supported by the Major State Basic Research Development Program of China (2007CB512100), and the National Natural Science Foundation of China (30630021 and 30800371) and an NIH grant (HL090905).

Author information



Corresponding authors

Correspondence to Chaoliang Wei or Heping Cheng.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figures 1-11 with Legends, Supplementary Tables 1-2 and a Supplementary Reference (PDF 750 kb)

Supplementary Movie

Supplementary Movie 1 shows Calcium flickers occurring in a migrating human embryonic lung fibroblast (WI-38). 30 consecutive Confocal images were compressed to 3.0 second video (10 frames per second). Left panel is DIC transmission part, which shows the motile of a fibroblast. Middle panel is fluo-4 fluorescence part, which shows Calcium flickers occurring during the fibroblast migrating. Right panel is the merged part. (AVI 2628 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wei, C., Wang, X., Chen, M. et al. Calcium flickers steer cell migration. Nature 457, 901–905 (2009).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing