Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electric field control of the LaAlO3/SrTiO3 interface ground state


Interfaces between complex oxides are emerging as one of the most interesting systems in condensed matter physics1. In this special setting, in which translational symmetry is artificially broken, a variety of new and unusual electronic phases can be promoted2. Theoretical studies predict complex phase diagrams and suggest the key role of the charge carrier density in determining the systems’ ground states. A particularly fascinating system is the conducting interface between the band insulators LaAlO3 and SrTiO3 (ref. 3). Recently two possible ground states have been experimentally identified: a magnetic state4 and a two-dimensional superconducting condensate5. Here we use the electric field effect to explore the phase diagram of the system. The electrostatic tuning of the carrier density allows an on/off switching of superconductivity and drives a quantum phase transition6,7,8 between a two-dimensional superconducting state and an insulating state. Analyses of the magnetotransport properties in the insulating state are consistent with weak localization and do not provide evidence for magnetism. The electric field control of superconductivity demonstrated here opens the way to the development of new mesoscopic superconducting circuits.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Dielectric characterization of the field-effect device.
Figure 2: Field-effect modulation of the transport properties.
Figure 3: Electronic phase diagram of the LaAlO 3 /SrTiO 3 interface.
Figure 4: Field-effect modulation of the magnetotransport properties.


  1. Hwang, H. Y. Atomic control of the electronic structure at complex oxide heterointerfaces. Mater. Res. Soc. Bull. 31, 28–35 (2006)

    Article  CAS  Google Scholar 

  2. Okamoto, S. & Millis, A. J. Electronic reconstruction at an interface between a Mott insulator and a band insulator. Nature 428, 630–633 (2004)

    Article  ADS  CAS  Google Scholar 

  3. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. Nature Mater. 6, 493–496 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007)

    Article  ADS  CAS  Google Scholar 

  6. Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, 1999)

    MATH  Google Scholar 

  7. Sondhi, S. L., Girvin, S. M., Carini, J. P. & Shahar, D. Continuous quantum phase transitions. Rev. Mod. Phys. 69, 315–333 (1997)

    Article  ADS  Google Scholar 

  8. v. Löohneysen, H., Rosch, A., Vojta, M. & Wölfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007)

    Article  ADS  Google Scholar 

  9. Herranz, G. et al. High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives. Phys. Rev. Lett. 98, 216803 (2007)

    Article  ADS  CAS  Google Scholar 

  10. Kalabukhov, A. et al. Effect of oxygen vacancies in the SrTiO3 substrate on the electrical properties of the LaAlO3/SrTiO3 interface. Phys. Rev. B 75, 121404 (2007)

    Article  ADS  Google Scholar 

  11. Siemons, W. et al. Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: Possibility of intrinsic doping. Phys. Rev. Lett. 98, 196802 (2007)

    Article  ADS  Google Scholar 

  12. Willmott, P. R. et al. Structural basis for the conducting interface between LaAlO3 and SrTiO3 . Phys. Rev. Lett. 99, 155502 (2007)

    Article  ADS  CAS  Google Scholar 

  13. Nakagawa, N., Hwang, H. Y. & Muller, D. A. Why some interfaces cannot be sharp. Nature Mater. 5, 204–209 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Basletic, M. et al. Mapping the spatial distribution of charge carriers in LaAlO3/SrTiO3 heterostructures. Nature Mater. 7, 621–625 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Ahn, C. H., Triscone, J.-M. & Mannhart, J. Electric field effect in correlated oxide systems. Nature 424, 1015–1018 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Ahn, C. H. et al. Electrostatic modification of novel materials. Rev. Mod. Phys. 78, 1185–1212 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006)

    Article  ADS  CAS  Google Scholar 

  18. Matthey, D., Gariglio, S. & Triscone, J.-M. Field-effect experiments in NdBa2Cu3O7-δ ultrathin films using a SrTiO3 single-crystal gate insulator. Appl. Phys. Lett. 83, 3758–3760 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Christen, H.-M., Mannhart, J., Williams, E. J. & Gerber, C. Dielectric properties of sputtered SrTiO3 films. Phys. Rev. B 49, 12095–12104 (1994)

    Article  ADS  CAS  Google Scholar 

  20. Schneider, T. Universal critical quantum properties of cuprate superconductors. Acta Phys. Polon. A 91, 203–212 (1997)

    Article  ADS  CAS  Google Scholar 

  21. Schneider, T. The Physics of Superconductors Vol. 2, 111 (Springer, 2004)

    Book  Google Scholar 

  22. Schneider, T. & Singer, J. M. Phase Transition Approach to High Temperature Superconductivity (Imperial College Press, 2000)

    Book  Google Scholar 

  23. Parendo, K. A. et al. Electrostatic tuning of the superconductor–insulator transition in two dimensions. Phys. Rev. Lett. 94, 197004 (2005)

    Article  ADS  Google Scholar 

  24. Aubin, H. et al. Magnetic-field-induced quantum superconductor–insulator transition in Nb0. 15Si0. 85 . Phys. Rev. B 73, 094521 (2006)

    Article  ADS  Google Scholar 

  25. Fisher, M. P. A. & Grinstein, G. Quantum critical phenomena in charged superconductors. Phys. Rev. Lett. 60, 208–211 (1988)

    Article  ADS  CAS  Google Scholar 

  26. Matthey, D., Reyren, N., Schneider, T. & Triscone, J.-M. Electric-field-effect modulation of the transition temperature, mobile carrier density, and in-plane penetration depth of NdBa2Cu3O7-δ thin films. Phys. Rev. Lett. 98, 057002 (2007)

    Article  ADS  CAS  Google Scholar 

  27. Bergmann, G. Weak localization in thin films. Phys. Rep. 107, 1–58 (1984)

    Article  ADS  CAS  Google Scholar 

  28. Das, D. & Doniach, S. Weakly localized bosons. Phys. Rev. B 57, 14440–14443 (1998)

    Article  ADS  CAS  Google Scholar 

  29. Rijnders, G., Koster, G., Blank, D. H. A. & Rogalla, H. In situ monitoring during pulsed laser deposition of complex oxides using reflection high energy electron diffraction under high oxygen pressure. Appl. Phys. Lett. 70, 1888–1890 (1997)

    Article  ADS  CAS  Google Scholar 

Download references


We thank T. Giamarchi, L. Benfatto, T. Kopp and A.-S. Ruetschi for discussions and M. Lopes for technical assistance. We acknowledge financial support by the Swiss National Science Foundation through the National Centre of Competence in Research ‘Materials with Novel Electronic Properties’ MaNEP and Division II, by the European Union through the project ‘Nanoxide’, by the Deutsche Forschungsgemeinschaft through the SFB484, and by the European Science Foundation through the program ‘Thin Films for Novel Oxide Devices’.

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. D. Caviglia.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Caviglia, A., Gariglio, S., Reyren, N. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing