Endochondral ossification is required for haematopoietic stem-cell niche formation


Little is known about the formation of niches, local micro-environments required for stem-cell maintenance. Here we develop an in vivo assay for adult haematopoietic stem-cell (HSC) niche formation1,2. With this assay, we identified a population of progenitor cells with surface markers CD45-Tie2-αV+CD105+Thy1.1- (CD105+Thy1-) that, when sorted from 15.5 days post-coitum fetal bones and transplanted under the adult mouse kidney capsule, could recruit host-derived blood vessels, produce donor-derived ectopic bones through a cartilage intermediate and generate a marrow cavity populated by host-derived long-term reconstituting HSC (LT-HSC). In contrast, CD45-Tie2-αV+CD105+Thy1+ (CD105+Thy1+) fetal bone progenitors form bone that does not contain a marrow cavity. Suppressing expression of factors involved in endochondral ossification, such as osterix and vascular endothelial growth factor (VEGF), inhibited niche generation. CD105+Thy1- progenitor populations derived from regions of the fetal mandible or calvaria that do not undergo endochondral ossification formed only bone without marrow in our assay. Collectively, our data implicate endochondral ossification, bone formation that proceeds through a cartilage intermediate, as a requirement for adult HSC niche formation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Fetal bone cells can initiate an ectopic HSC niche.
Figure 2: CD105 + Thy1 - population forms ectopic HSC niche through a cartilaginous intermediate.
Figure 3: Niche formation is dependent on endochondral ossification.
Figure 4: Skeletal progenitors from mandible and calvaria do not form HSC niches efficiently.


  1. 1

    Moore, K. A. & Lemischka, I. R. Stem cells and their niches. Science 311, 1880–1885 (2006)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Adams, G. B. & Scadden, D. T. The hematopoietic stem cell in its place. Nature Immunol. 7, 333–337 (2006)

    CAS  Article  Google Scholar 

  3. 3

    Wilson, A. & Trumpp, A. Bone-marrow haematopoietic-stem-cell niches. Nature Rev. Immunol. 6, 93–106 (2006)

    CAS  Article  Google Scholar 

  4. 4

    Weissman, I. L. in Novartis Foundation Symposium No. 265, 35–50; discussion 50–34 92–37 (Novartis Foundation, 2005)

    Google Scholar 

  5. 5

    Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005)

    CAS  Article  Google Scholar 

  6. 6

    Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Arai, F. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149–161 (2004)

    CAS  Article  Google Scholar 

  9. 9

    Wright, D. E. et al. Physiological migration of hematopoietic stem and progenitor cells. Science 294, 1933–1936 (2001)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Whitlock, C. A., Tidmarsh, G. F., Muller-Sieburg, C. & Weissman, I. L. Bone marrow stromal cell lines with lymphopoietic activity express high levels of a pre-B neoplasia-associated molecule. Cell 48, 1009–1021 (1987)

    CAS  Article  Google Scholar 

  11. 11

    Moore, K. A., Ema, H. & Lemischka, I. R. In vitro maintenance of highly purified, transplantable hematopoietic stem cells. Blood 89, 4337–4347 (1997)

    CAS  PubMed  Google Scholar 

  12. 12

    Dexter, T. M., Allen, T. D. & Lajtha, L. G. Conditions controlling the proliferation of haemopoietic stem cells in vitro . J. Cell. Physiol. 91, 335–344 (1977)

    CAS  Article  Google Scholar 

  13. 13

    Christensen, J. L., Wright, D. E., Wagers, A. J. & Weissman, I. L. Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biol. 2, E75 (2004)

    Article  Google Scholar 

  14. 14

    Cheresh, D. A. Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc. Natl Acad. Sci. USA 84, 6471–6475 (1987)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Geoffroy, V., Ducy, P. & Karsenty, G. A. PEBP2 alpha/AML-1-related factor increases osteocalcin promoter activity through its binding to an osteoblast-specific cis-acting element. J. Biol. Chem. 270, 30973–30979 (1995)

    CAS  Article  Google Scholar 

  16. 16

    Akiyama, H. et al. Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc. Natl Acad. Sci. USA 102, 14665–14670 (2005)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Fleischman, R. A. & Mintz, B. Prevention of genetic anemias in mice by microinjection of normal hematopoietic stem cells into the fetal placenta. Proc. Natl Acad. Sci. USA 76, 5736–5740 (1979)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Blair, H. C. et al. Parathyroid hormone-regulated production of stem cell factor in human osteoblasts and osteoblast-like cells. Biochem. Biophys. Res. Commun. 255, 778–784 (1999)

    CAS  Article  Google Scholar 

  19. 19

    Aye, M. T. et al. Expression of stem cell factor and c-kit mRNA in cultured endothelial cells, monocytes and cloned human bone marrow stromal cells (CFU-RF). Exp. Hematol. 20, 523–527 (1992)

    CAS  PubMed  Google Scholar 

  20. 20

    Ikuta, K. & Weissman, I. L. Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc. Natl Acad. Sci. USA 89, 1502–1506 (1992)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Nakashima, K. et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17–29 (2002)

    CAS  Article  Google Scholar 

  22. 22

    Koga, T. et al. NFAT and Osterix cooperatively regulate bone formation. Nature Med. 11, 880–885 (2005)

    CAS  Article  Google Scholar 

  23. 23

    Zelzer, E. et al. VEGFA is necessary for chondrocyte survival during bone development. Development 131, 2161–2171 (2004)

    CAS  Article  Google Scholar 

  24. 24

    Jacobi, J. et al. Adenoviral gene transfer with soluble vascular endothelial growth factor receptors impairs angiogenesis and perfusion in a murine model of hindlimb ischemia. Circulation 110, 2424–2429 (2004)

    CAS  Article  Google Scholar 

  25. 25

    Maes, C. et al. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech. Dev. 111, 61–73 (2002)

    CAS  Article  Google Scholar 

  26. 26

    Hall, B. K. & Miyake, T. All for one and one for all: condensations and the initiation of skeletal development. Bioessays 22, 138–147 (2000)

    CAS  Article  Google Scholar 

  27. 27

    Sacchetti, B. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324–336 (2007)

    CAS  Article  Google Scholar 

  28. 28

    Metz, M. et al. Mast cells can enhance resistance to snake and honeybee venoms. Science 313, 526–530 (2006)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Garvey, W. et al. Improved Movat pentachrome stain. Stain Technol. 61, 60–62 (1986)

    CAS  Article  Google Scholar 

Download references


We thank B. Péault for suggestions; L. Jerabek for laboratory management; C. Muscat for antibody production and conjugation;Y. Park, J. K. Lee and A. K. Bershad for technical support; and T. Serwold and L. Richie for advice and reading the manuscript. This study was supported in part by a USPHS National Institutes of Health (NIH) grant (2R01HL058770-08) and in part by a NIH grant (5R01CA086065-09), terminated by NIH Study Section, and in part by the Virginia and Daniel K. Ludwig Professorship to I.L.W. C.K.F.C. and C.A.L. are supported by an NIH Regenerative Medicine training grant. C.-C.C. is supported by an NIH Pathway to Independence award (5K99HL087936-02). D.L.K. is supported by an NIH Career Development award (K08-HL076335) and a Hope Street Kids research award, K. W. and C. J. K. are supported by NIH grants (1R01HL074267-01 and 1R01NS052830-01).

Author Contributions C.K.F.C. initiated the project and, with C.-C.C. and I.L.W., supervised the study, C.K.F.C., C.-C.C., C.A.L., D.L.K., J.B.K. and I.L.W. conceived and designed the experiments. C.K.F.C., C.-C.C., C.A.L., D.L.K., J.B.K., A.T.D. and K.W. performed the experiments. C.K.F.C., C.-C.C., C.A.L., D.L.K., J.B.K., A.T.D., J.A.H., C.J.K., and I.L.W. analysed the data. C.K.F.C., C.-C.C., I.L.W., C.J.K. and J.A.H. contributed reagents/materials/analysis tools. C.K.F.C., C.-C.C., C.A.L., D.L.K. and I.L.W. prepared the manuscript.

Author information



Corresponding authors

Correspondence to Charles K. F. Chan or Ching-Cheng Chen.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Tables 1- 2, Supplementary Figures S1-S5 and Supplementary References. (This file was re-uploaded on December 12th, 2008 to incorporate the Supplementary Methods, Supplementary Tables 1-2 and Supplementary References missed from the original file). (PDF 12476 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chan, C., Chen, C., Luppen, C. et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457, 490–494 (2009). https://doi.org/10.1038/nature07547

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.