Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Harnessing optical forces in integrated photonic circuits

Abstract

The force exerted by photons is of fundamental importance in light–matter interactions. For example, in free space, optical tweezers have been widely used to manipulate atoms and microscale dielectric particles1,2. This optical force is expected to be greatly enhanced in integrated photonic circuits in which light is highly concentrated at the nanoscale3,4. Harnessing the optical force on a semiconductor chip will allow solid state devices, such as electromechanical systems, to operate under new physical principles. Indeed, recent experiments have elucidated the radiation forces of light in high-finesse optical microcavities5,6,7, but the large footprint of these devices ultimately prevents scaling down to nanoscale dimensions. Recent theoretical work has predicted that a transverse optical force can be generated and used directly for electromechanical actuation without the need for a high-finesse cavity3. However, on-chip exploitation of this force has been a significant challenge, primarily owing to the lack of efficient nanoscale mechanical transducers in the photonics domain. Here we report the direct detection and exploitation of transverse optical forces in an integrated silicon photonic circuit through an embedded nanomechanical resonator. The nanomechanical device, a free-standing waveguide, is driven by the optical force and read out through evanescent coupling of the guided light to the dielectric substrate. This new optical force enables all-optical operation of nanomechanical systems on a CMOS (complementary metal-oxide-semiconductor)-compatible platform, with substantial bandwidth and design flexibility compared to conventional electrical-based schemes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The substrate coupled waveguide gradient force.
Figure 2: Schematics of the experimental set-up and device system.
Figure 3: Device characterization and experimental demonstration of the waveguide gradient force.
Figure 4: Measurement of the thermal response of the device.

Similar content being viewed by others

References

  1. Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970)

    Article  ADS  CAS  Google Scholar 

  2. Chu, S. Laser manipulation of atoms and particles. Science 253, 861–866 (1991)

    Article  ADS  CAS  Google Scholar 

  3. Povinelli, M. L. et al. Evanescent-wave bonding between optical waveguides. Opt. Lett. 30, 3042–3044 (2005)

    Article  ADS  Google Scholar 

  4. Rakich, P. T., Popovic, M. A., Soljacic, M. & Ippen, E. P. Trapping, corralling and spectral bonding of optical resonances through optically induced potentials. Nature Photon. 1, 658–665 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. J. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Kippenberg, T. J. & Vahala, K. J. Cavity opto-mechanics. Opt. Express 15, 17172–17205 (2007)

    Article  ADS  Google Scholar 

  7. Eichenfield, M., Michael, C. P., Perahia, R. & Painter, O. Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces. Nature Photon. 1, 416–422 (2007)

    Article  ADS  CAS  Google Scholar 

  8. Carmon, T. & Vahala, K. J. Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency. Phys. Rev. Lett. 98, 123901 (2007)

    Article  ADS  Google Scholar 

  9. Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Regal, C. A., Teufel, J. D. & Lehnert, K. W. Measuring nanomechanical motion with a microwave cavity interferometer. Nature Phys. 4, 555–560 (2008)

    Article  CAS  Google Scholar 

  11. Taillaert, D., Bienstman, P. & Baets, R. Compact efficient broadband grating coupler for silicon-on-insulator waveguides. Opt. Lett. 29, 2749–2751 (2004)

    Article  ADS  Google Scholar 

  12. Sader, J. E., Larson, I., Mulvaney, P. & White, L. R. Method for the calibration of atomic-force microscope cantilevers. Rev. Sci. Instrum. 66, 3789–3798 (1995)

    Article  ADS  CAS  Google Scholar 

  13. LaHaye, M. D., Buu, O., Camarota, B. & Schwab, K. C. Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Garmire, E. Criteria for optical bistability in a lossy saturating Fabry-Perot. IEEE J. Quant. Electron. 25, 289–295 (1989)

    Article  ADS  CAS  Google Scholar 

  15. Nayfeh, A. H. & Mook, D. T. Nonlinear Oscillations (Wiley, 1979)

    MATH  Google Scholar 

  16. Kleckner, D. & Bouwmeester, D. Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75–78 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Ilic, B., Krylov, S., Aubin, K., Reichenbach, R. & Craighead, H. G. Optical excitation of nanoelectromechanical oscillators. Appl. Phys. Lett. 86, 193114 (2005)

    Article  ADS  Google Scholar 

  18. Metzger, C. H. & Karrai, K. Cavity cooling of a microlever. Nature 432, 1002–1005 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Schliesser, A., Del'Haye, P., Nooshi, N., Vahala, K. J. & Kippenberg, T. J. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006)

    Article  ADS  CAS  Google Scholar 

  20. Cahill, D. G. Thermal-conductivity measurement from 30-K to 750-K – the 3ω method. Rev. Sci. Instrum. 61, 802–808 (1990)

    Article  ADS  CAS  Google Scholar 

  21. Soref, R. A. & Bennett, B. R. Electrooptical effects in silicon. IEEE J. Quant. Electron. 23, 123–129 (1987)

    Article  ADS  Google Scholar 

  22. Almeida, V. R. & Lipson, M. Optical bistability on a silicon chip. Opt. Lett. 29, 2387–2389 (2004)

    Article  ADS  Google Scholar 

  23. Huang, X. M. H., Zorman, C. A., Mehregany, M. & Roukes, M. L. Nanodevice motion at microwave frequencies. Nature 421, 496 (2003)

    Article  ADS  CAS  Google Scholar 

  24. Li, M., Tang, H. X. & Roukes, M. L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotechnol. 2, 114–120 (2007)

    Article  ADS  CAS  Google Scholar 

  25. Masmanidis, S. C. et al. Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation. Science 317, 780–783 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Almeida, V. R., Barrios, C. A., Panepucci, R. R. & Lipson, M. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. A nanoelectromechanical tunable laser. Nature Photon. 2, 180–184 (2008)

    Article  ADS  CAS  Google Scholar 

  28. Almeida, V. R., Panepucci, R. R. & Lipson, M. Nanotaper for compact mode conversion. Opt. Lett. 28, 1302–1304 (2003)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Chen and B. Penkov for contributions at the early stage of this project. W.H.P.P. acknowledges support from the Alexander von Humboldt postdoctoral fellowship programme. The devices were fabricated at Yale University Microelectronics Center and the NSF-sponsored Cornell Nanoscale Facility. M.H. acknowledges support from the Air Force Office of Scientific Research Young Investigator Program and the NSF STC MDITR Center. H.X.T. thanks M. Roukes, A. Scherer, J. Harris and S. Girvin for discussions.

Author Contributions H.X.T. planned and supervised the project; M. L. and H.X.T. conceived the experiment; M.L. fabricated the devices, and did the measurements; W.H.P.P. conducted the force calculation and simulation; C.X. helped with the automation of the pattern generation; M.L., W.H.P.P. and H.X.T. analysed the data and wrote the manuscript; and T.B.-J. and M.H. provided the layout of the couplers and waveguide, and assisted with fabrication of devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. X. Tang.

Supplementary information

Supplementary Information

This file contains Supplementary Methods with Supplementary Figures S1-S2 and Supplementary References, and Supplementary Discussion with Supplementary Figures 1-10, Supplementary Table 1 and Supplementary References. (PDF 2146 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Pernice, W., Xiong, C. et al. Harnessing optical forces in integrated photonic circuits. Nature 456, 480–484 (2008). https://doi.org/10.1038/nature07545

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07545

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing