Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mitofusin 2 tethers endoplasmic reticulum to mitochondria

A Corrigendum to this article was published on 10 September 2014

This article has been updated


Juxtaposition between endoplasmic reticulum (ER) and mitochondria is a common structural feature, providing the physical basis for intercommunication during Ca2+ signalling; yet, the molecular mechanisms controlling this interaction are unknown. Here we show that mitofusin 2, a mitochondrial dynamin-related protein mutated in the inherited motor neuropathy Charcot–Marie–Tooth type IIa, is enriched at the ER–mitochondria interface. Ablation or silencing of mitofusin 2 in mouse embryonic fibroblasts and HeLa cells disrupts ER morphology and loosens ER–mitochondria interactions, thereby reducing the efficiency of mitochondrial Ca2+ uptake in response to stimuli that generate inositol-1,4,5-trisphosphate. An in vitro assay as well as genetic and biochemical evidences support a model in which mitofusin 2 on the ER bridges the two organelles by engaging in homotypic and heterotypic complexes with mitofusin 1 or 2 on the surface of mitochondria. Thus, mitofusin 2 tethers ER to mitochondria, a juxtaposition required for efficient mitochondrial Ca2+ uptake.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: MFN2 regulates morphology of the endoplasmic reticulum.
Figure 2: MFN2 is required at the endoplasmic reticulum to juxtapose it to mitochondria.
Figure 3: Juxtaposition between ER and mitochondria requires ER MFN2 and mitochondrial MFN2 or MFN1.
Figure 4: ER MFN2 engages in homotypic or heterotypic interactions with mitochondrial MFNs.
Figure 5: MFN2 regulates ER Ca 2+ levels and its transfer to mitochondria.

Change history

  • 10 September 2014

    Nature 456, 605–610 (2008); doi:10.1038/nature07534 In Fig. 1a of this Article, the representative image of a volume-rendered three-dimensional reconstruction of a z-stack of confocal images of endoplasmic-reticulum-targeted yellow fluorescent protein (ER-YFP) in a Mfn2−/− cell expressing MFN2IYFFT and that of a Mfn1−/− cell appear to be duplicated.


  1. Ferri, K. F. & Kroemer, G. Organelle-specific initiation of cell death pathways. Nature Cell Biol. 3, E255–E263 (2001)

    CAS  Article  Google Scholar 

  2. Rizzuto, R. & Pozzan, T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol. Rev. 86, 369–408 (2006)

    CAS  Article  Google Scholar 

  3. Rizzuto, R., Simpson, A. W., Brini, M. & Pozzan, T. Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358, 325–327 (1992)

    ADS  CAS  Article  Google Scholar 

  4. Rizzuto, R., Brini, M., Murgia, M. & Pozzan, T. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262, 744–747 (1993)

    ADS  CAS  Article  Google Scholar 

  5. Rizzuto, R. et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763–1766 (1998)

    ADS  CAS  Article  Google Scholar 

  6. Hajnoczky, G., Robb-Gaspers, L. D., Seitz, M. B. & Thomas, A. P. Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82, 415–424 (1995)

    CAS  Article  Google Scholar 

  7. Scorrano, L. et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300, 135–139 (2003)

    ADS  CAS  Article  Google Scholar 

  8. Vance, J. E. Phospholipid synthesis in a membrane fraction associated with mitochondria. J. Biol. Chem. 265, 7248–7256 (1990)

    CAS  Article  Google Scholar 

  9. Soltys, B. J. & Gupta, R. S. Interrelationships of endoplasmic reticulum, mitochondria, intermediate filaments, and microtubules–a quadruple fluorescence labeling study. Biochem. Cell Biol. 70, 1174–1186 (1992)

    CAS  Article  Google Scholar 

  10. Simmen, T. et al. PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J. 24, 717–729 (2005)

    CAS  Article  Google Scholar 

  11. Pitts, K. R., Yoon, Y., Krueger, E. W. & McNiven, M. A. The dynamin-like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Mol. Biol. Cell 10, 4403–4417 (1999)

    CAS  Article  Google Scholar 

  12. Szabadkai, G. et al. Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol. Cell 16, 59–68 (2004)

    CAS  Article  Google Scholar 

  13. Cipolat, S., de Brito, O. M., Dal Zilio, B. & Scorrano, L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl Acad. Sci. USA 101, 15927–15932 (2004)

    ADS  CAS  Article  Google Scholar 

  14. Frezza, C. et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177–189 (2006)

    CAS  Article  Google Scholar 

  15. Chen, H. et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189–200 (2003)

    CAS  Article  Google Scholar 

  16. Koshiba, T. et al. Structural basis of mitochondrial tethering by mitofusin complexes. Science 305, 858–862 (2004)

    ADS  CAS  Article  Google Scholar 

  17. Ishihara, N., Eura, Y. & Mihara, K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J. Cell Sci. 117, 6535–6546 (2004)

    CAS  Article  Google Scholar 

  18. Zuchner, S. et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot–Marie–Tooth neuropathy type 2A. Nature Genet. 36, 449–451 (2004)

    Article  Google Scholar 

  19. Celli, J. et al. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J. Exp. Med. 198, 545–556 (2003)

    CAS  Article  Google Scholar 

  20. Koch, A., Yoon, Y., Bonekamp, N. A., McNiven, M. A. & Schrader, M. A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell 16, 5077–5086 (2005)

    CAS  Article  Google Scholar 

  21. Chen, K. H. et al. Dysregulation of HSG triggers vascular proliferative disorders. Nature Cell Biol. 6, 872–883 (2004)

    CAS  Article  Google Scholar 

  22. Marsh, B. J., Mastronarde, D. N., Buttle, K. F., Howell, K. E. & McIntosh, J. R. Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc. Natl Acad. Sci. USA 98, 2399–2406 (2001)

    ADS  CAS  Article  Google Scholar 

  23. Manders, E. M., Verbeek, F. J. & Aten, J. A. Measurement of co-localisation of objects in dual-colour confocal images. J. Microsc. 169, 375–382 (1993)

    CAS  Article  Google Scholar 

  24. Annis, M. G. et al. Endoplasmic reticulum localized Bcl-2 prevents apoptosis when redistribution of cytochrome c is a late event. Oncogene 20, 1939–1952 (2001)

    CAS  Article  Google Scholar 

  25. Rojo, M., Legros, F., Chateau, D. & Lombes, A. Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J. Cell Sci. 115, 1663–1674 (2002)

    CAS  Article  Google Scholar 

  26. Chen, H., Chomyn, A. & Chan, D. C. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 280, 26185–26192 (2005)

    CAS  Article  Google Scholar 

  27. Karbowski, M., Norris, K. L., Cleland, M. M., Jeong, S. Y. & Youle, R. J. Role of Bax and Bak in mitochondrial morphogenesis. Nature 443, 658–662 (2006)

    ADS  CAS  Article  Google Scholar 

  28. Csordas, G. et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174, 915–921 (2006)

    CAS  Article  Google Scholar 

  29. Pinton, P. et al. The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J. 20, 2690–2701 (2001)

    CAS  Article  Google Scholar 

  30. Voeltz, G. K., Prinz, W. A., Shibata, Y., Rist, J. M. & Rapoport, T. A. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124, 573–586 (2006)

    CAS  Article  Google Scholar 

  31. Mironov, S. L. & Symonchuk, N. ER vesicles and mitochondria move and communicate at synapses. J. Cell Sci. 119, 4926–4934 (2006)

    CAS  Article  Google Scholar 

  32. Ishii, K., Hirose, K. & Iino, M. Ca2+ shuttling between endoplasmic reticulum and mitochondria underlying Ca2+ oscillations. EMBO Rep. 7, 390–396 (2006)

    CAS  Article  Google Scholar 

  33. Guo, X. et al. Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circ. Res. 101, 1113–1122 (2007)

    CAS  Article  Google Scholar 

  34. Pan, X. et al. Nucleus-vacuole junctions in Saccharomyces cerevisiae are formed through the direct interaction of Vac8p with Nvj1p. Mol. Biol. Cell 11, 2445–2457 (2000)

    CAS  Article  Google Scholar 

  35. Frezza, C., Cipolat, S. & Scorrano, L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nature Protocols 2, 287–295 (2007)

    CAS  Article  Google Scholar 

Download references


O.M.d.B. received a ‘Bolsa de Doutoramento’ of FCT Portugal. L.S. is senior scientist of the Dulbecco-Telethon Institute and EMBO YIP. This work was supported by Telethon Italy, Compagnia di San Paolo Italy, United Mitochondrial Disease Foundation USA, Muscular Distrophy Association USA and Swiss National Science Foundation 3100A0-118171.

Author Contributions O.M.d.B. and L.S. conceived and designed the experiments and wrote the manuscript. O.M.d.B. performed all the experiments.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Luca Scorrano.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-12, Supplementary Methods and Supplementary Notes. (PDF 8474 kb)

Supplementary Movie 1

Supplementary Movie 1. ER-mitochondria interaction in wt MEF. 180° rotation along the y-axis of a 3D-reconstruction of a z-axis stack of a wt MEF expressing erYFP (green) and mtRFP (red). (MOV 228 kb)

Supplementary Movie 2

Supplementary Movie 2. ER-mitochondria interaction in Mfn2-/- MEF. 180° rotation along the y-axis of a 3D-reconstruction of a z-axis stack of a Mfn2-/- MEF expressing erYFP (green) and mtRFP (red). (MOV 172 kb)

Supplementary Movie 3

Supplementary Movie 3. Electron tomography showing ER-mitochondria interaction in a wt MEF. Rotation along the y and x-axis of a 3D-rendered reconstruction of representative area from an electron tomogram of a wt MEF. Orange objects represent mitochondria, cyan ones cisternae of ER. (MOV 886 kb)

Supplementary Movie 4

Supplementary Movie 4. Electron tomography showing ER-mitochondria interaction in a Mfn2-/- MEF. Rotation along the y and x-axis of a 3D-rendered reconstruction of representative area from an electron tomogram of Mfn2-/- MEF. Orange objects represent mitochondria, cyan ones cisternae of ER. (MOV 815 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Brito, O., Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing