Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Protein kinase R reveals an evolutionary model for defeating viral mimicry

Abstract

Distinguishing self from non-self is a fundamental biological challenge. Many pathogens exploit the challenge of self discrimination by employing mimicry to subvert key cellular processes including the cell cycle, apoptosis and cytoskeletal dynamics1,2,3,4,5. Other mimics interfere with immunity6,7. Poxviruses encode K3L, a mimic of eIF2α, which is the substrate of protein kinase R (PKR), an important component of innate immunity in vertebrates8,9. The PKR–K3L interaction exemplifies the conundrum imposed by viral mimicry. To be effective, PKR must recognize a conserved substrate (eIF2α) while avoiding rapidly evolving substrate mimics such as K3L. Using the PKR–K3L system and a combination of phylogenetic and functional analyses, we uncover evolutionary strategies by which host proteins can overcome mimicry. We find that PKR has evolved under intense episodes of positive selection in primates. The ability of PKR to evade viral mimics is partly due to positive selection at sites most intimately involved in eIF2α recognition. We also find that adaptive changes on multiple surfaces of PKR produce combinations of substitutions that increase the odds of defeating mimicry. Thus, although it can seem that pathogens gain insurmountable advantages by mimicking cellular components, host factors such as PKR can compete in molecular ‘arms races’ with mimics because of evolutionary flexibility at protein interaction interfaces challenged by mimicry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Widespread positive selection has shaped PKR throughout primate evolution.
Figure 2: Distinct surfaces of the PKR kinase domain are crucial to K3L resistance.
Figure 3: PKR chimaeras reveal masking of K3L sensitivity by Leu 394.

Similar content being viewed by others

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Data deposits

Sequences of PKR have been deposited in Genbank under accession numbers EU733254EU733271 and FJ374685.

References

  1. Murphy, P. M. Molecular mimicry and the generation of host defense protein diversity. Cell 72, 823–826 (1993)

    Article  CAS  Google Scholar 

  2. Angot, A., Vergunst, A., Genin, S. & Peeters, N. Exploitation of eukaryotic ubiquitin signaling pathways by effectors translocated by bacterial type III and type IV secretion systems. PLoS Pathog. 3, e3 (2007)

    Article  Google Scholar 

  3. Benedict, C. A., Norris, P. S. & Ware, C. F. To kill or be killed: viral evasion of apoptosis. Nature Immunol. 3, 1013–1018 (2002)

    Article  CAS  Google Scholar 

  4. Izard, T., Tran Van Nhieu, G. & Bois, P. R. Shigella applies molecular mimicry to subvert vinculin and invade host cells. J. Cell Biol. 175, 465–475 (2006)

    Article  CAS  Google Scholar 

  5. Stebbins, C. E. & Galan, J. E. Structural mimicry in bacterial virulence. Nature 412, 701–705 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Alcami, A. Viral mimicry of cytokines, chemokines and their receptors. Nature Rev. Immunol. 3, 36–50 (2003)

    Article  CAS  Google Scholar 

  7. Finlay, B. B. & McFadden, G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124, 767–782 (2006)

    Article  CAS  Google Scholar 

  8. Meurs, E. et al. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62, 379–390 (1990)

    Article  CAS  Google Scholar 

  9. Dever, T. E., Dar, A. C. & Sicheri, F. in Translational Control in Biology and Medicine (eds Mathews, M. B., Sonenberg, N. & Hershey, J. W. B.) 319–344 (Cold Spring Harbor Laboratory Press, 2007)

    Google Scholar 

  10. Langland, J. O., Cameron, J. M., Heck, M. C., Jancovich, J. K. & Jacobs, B. L. Inhibition of PKR by RNA and DNA viruses. Virus Res. 119, 100–110 (2006)

    Article  CAS  Google Scholar 

  11. Sawyer, S. L., Emerman, M. & Malik, H. S. Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol. 2, E275 (2004)

    Article  Google Scholar 

  12. Nielsen, R. et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3, e170 (2005)

    Article  Google Scholar 

  13. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007)

    Article  CAS  Google Scholar 

  14. Scheffler, K., Martin, D. P. & Seoighe, C. Robust inference of positive selection from recombining coding sequences. Bioinformatics 22, 2493–2499 (2006)

    Article  CAS  Google Scholar 

  15. Dar, A. C., Dever, T. E. & Sicheri, F. Higher-order substrate recognition of eIF2α by the RNA-dependent protein kinase PKR. Cell 122, 887–900 (2005)

    Article  CAS  Google Scholar 

  16. Li, Y. et al. On the origin of smallpox: correlating variola phylogenics with historical smallpox records. Proc. Natl Acad. Sci. USA 104, 15787–15792 (2007)

    Article  ADS  CAS  Google Scholar 

  17. Babkin, I. V. & Shchelkunov, S. N. The time scale in poxvirus evolution. [In Russian.]. Mol. Biol. (Mosk.) 40, 20–24 (2006)

    Article  CAS  Google Scholar 

  18. Sawyer, S. L., Wu, L. I., Emerman, M. & Malik, H. S. Positive selection of primate TRIM5α identifies a critical species-specific retroviral restriction domain. Proc. Natl Acad. Sci. USA 102, 2832–2837 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Kaiser, S. M., Malik, H. S. & Emerman, M. Restriction of an extinct retrovirus by the human TRIM5α antiviral protein. Science 316, 1756–1758 (2007)

    Article  ADS  CAS  Google Scholar 

  20. Chong, K. L. et al. Human p68 kinase exhibits growth suppression in yeast and homology to the translational regulator GCN2. EMBO J. 11, 1553–1562 (1992)

    Article  CAS  Google Scholar 

  21. Dey, M. et al. Mechanistic link between PKR dimerization, autophosphorylation, and eIF2α substrate recognition. Cell 122, 901–913 (2005)

    Article  CAS  Google Scholar 

  22. Dever, T. E. et al. Mammalian eukaryotic initiation factor 2α kinases functionally substitute for GCN2 protein kinase in the GCN4 translational control mechanism of yeast. Proc. Natl Acad. Sci. USA 90, 4616–4620 (1993)

    Article  ADS  CAS  Google Scholar 

  23. Kawagishi-Kobayashi, M., Silverman, J. B., Ung, T. L. & Dever, T. E. Regulation of the protein kinase PKR by the vaccinia virus pseudosubstrate inhibitor K3L is dependent on residues conserved between the K3L protein and the PKR substrate eIF2alpha. Mol. Cell. Biol. 17, 4146–4158 (1997)

    Article  CAS  Google Scholar 

  24. Langland, J. O. & Jacobs, B. L. The role of the PKR-inhibitory genes, E3L and K3L, in determining vaccinia virus host range. Virology 299, 133–141 (2002)

    Article  CAS  Google Scholar 

  25. Poon, A. F., Lewis, F. I., Pond, S. L. & Frost, S. D. An evolutionary-network model reveals stratified interactions in the V3 loop of the HIV-1 envelope. PLOS Comput. Biol. 3, e231 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  26. Kerns, J. A., Emerman, M. & Malik, H. S. Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein. PLoS Genet. 4, e21 (2008)

    Article  Google Scholar 

  27. Essbauer, S., Bremont, M. & Ahne, W. Comparison of the eIF-2α homologous proteins of seven ranaviruses (Iridoviridae). Virus Genes 23, 347–359 (2001)

    Article  CAS  Google Scholar 

  28. Ortlund, E. A., Bridgham, J. T., Redinbo, M. R. & Thornton, J. W. Crystal structure of an ancient protein: evolution by conformational epistasis. Science 317, 1544–1548 (2007)

    Article  ADS  CAS  Google Scholar 

  29. Dean, A. M. & Thornton, J. W. Mechanistic approaches to the study of evolution: the functional synthesis. Nature Rev. Genet. 8, 675–688 (2007)

    Article  CAS  Google Scholar 

  30. Sawyer, S. L. & Malik, H. S. Positive selection of yeast nonhomologous end-joining genes and a retrotransposon conflict hypothesis. Proc. Natl Acad. Sci. USA 103, 17614–17619 (2006)

    Article  ADS  CAS  Google Scholar 

  31. Comeron, J. M. K-Estimator: calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics 15, 763–764 (1999)

    Article  CAS  Google Scholar 

  32. Pond, S. L. & Frost, S. D. A genetic algorithm approach to detecting lineage-specific variation in selection pressure. Mol. Biol. Evol. 22, 478–485 (2005)

    Article  CAS  Google Scholar 

  33. DeLano, W. L. The PyMOL User’s Manual (DeLano Scientific, 2004)

    Google Scholar 

  34. Gietz, R. D. & Woods, R. A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 350, 87–96 (2002)

    Article  CAS  Google Scholar 

  35. Kushnirov, V. V. Rapid and reliable protein extraction from yeast. Yeast 16, 857–860 (2000)

    Article  CAS  Google Scholar 

  36. Tartaglia, J. et al. Highly attenuated poxvirus vectors. AIDS Res. Hum. Retroviruses 8, 1445–1447 (1992)

    Article  CAS  Google Scholar 

  37. Beattie, E., Tartaglia, J. & Paoletti, E. Vaccinia virus-encoded eIF-2α homolog abrogates the antiviral effect of interferon. Virology 183, 419–422 (1991)

    Article  CAS  Google Scholar 

  38. Earl, P. L., Cooper, N., Wyatt, L. S., Moss, B. & Carroll, M. W. Preparation of cell cultures and vaccinia virus stocks. Curr. Protocols Protein Sci. 5, Unit 5.12 10.1002/0471140864.ps0512s13 (2001)

    Google Scholar 

  39. Dar, A. C. & Sicheri, F. X-ray crystal structure and functional analysis of vaccinia virus K3L reveals molecular determinants for PKR subversion and substrate recognition. Mol. Cell 10, 295–305 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Dever for yeast strains and advice; J. Tartaglia and B. Jacobs for valuable reagents; and S. Biggins and S. Furuyama for yeast expression plasmids and advice, and M. Emerman, S. Henikoff, S. Biggins, A. Turkewitz, D. Gottschling, D. Koshland, E. Smith, J. Kerns, S. Sawyer and D. Vermaak for comments and suggestions. We are supported by NIH grant AI026672 (A.P.G.) and a Searle Scholar and Burroughs Wellcome Investigator Award (H.S.M.). N.C.E. is an Ellison Medical Foundation Fellow of the Life Sciences Research Foundation.

Author Contributions N.C.E. and H.S.M. designed the study. N.C.E. performed the evolutionary analysis and yeast growth assays. S.J.C. and A.P.G. designed and performed the vaccinia infection experiments. N.C.E. and H.S.M. wrote the paper. All authors discussed and edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harmit S. Malik.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures S1-S8 with legends. (PDF 8793 kb)

Supplementary Tables

This file contains Supplementary Tables S1-S11 with descriptions. (PDF 415 kb)

Supplementary Data

This file contains Supplementary Data S1-S3 with descriptions. (PDF 288 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elde, N., Child, S., Geballe, A. et al. Protein kinase R reveals an evolutionary model for defeating viral mimicry. Nature 457, 485–489 (2009). https://doi.org/10.1038/nature07529

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07529

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing