Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus

This article has been updated

Abstract

Aspergillus fumigatus is a saprotrophic fungus whose spores are ubiquitous in the atmosphere1. It is also an opportunistic human pathogen in immunocompromised individuals, causing potentially lethal invasive infections2,3, and is associated with severe asthma and sinusitis4. The species is only known to reproduce by asexual means5, but there has been accumulating evidence for recombination and gene flow from population genetic studies5,6,7,8, genome analysis9,10, the presence of mating-type genes8,10 and expression of sex-related genes8 in the fungus. Here we show that A. fumigatus possesses a fully functional sexual reproductive cycle that leads to the production of cleistothecia and ascospores, and the teleomorph Neosartorya fumigata is described. The species has a heterothallic breeding system; isolates of complementary mating types are required for sex to occur. We demonstrate increased genotypic variation resulting from recombination between mating type and DNA fingerprint markers in ascospore progeny from an Irish environmental subpopulation. The ability of A. fumigatus to engage in sexual reproduction is highly significant in understanding the biology and evolution of the species. The presence of a sexual cycle provides an invaluable tool for classical genetic analyses and will facilitate research into the genetic basis of pathogenicity and fungicide resistance in A. fumigatus, with the aim of improving methods for the control of aspergillosis. These results also yield insights into the potential for sexual reproduction in other supposedly ‘asexual’ fungi.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic diversity of 91 A. fumigatus isolates from Dublin, Ireland.
Figure 2: Neosartorya fumigata sp. nov.
Figure 3: Segregation patterns of molecular markers.

Similar content being viewed by others

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Data deposits

DNA sequences have been deposited in GenBank under accession numbers EU541353 and EU541354 (carboxypeptidase-5) and EU541355 (β-tubulin). The holotype of Neosartorya fumigata has been deposited in the Herbarium of the Royal Botanic Gardens, Kew, under accession number K(M)159484. The assignment Neosartorya fumigata O’Gorman, Fuller & Dyer sp. nov. has been deposited in MycoBank under accession number MB 512563.

Change history

  • 22 January 2009

    The Latin diagnosis for Neosartorya fumigata was moved from the Supplementary Information to the main text on 29 January 2009.

References

  1. Mullins, J., Harvey, R. & Seaton, A. Sources and incidence of airborne Aspergillus fumigatus (Fres). Clin. Allergy 6, 209–217 (1976)

    Article  CAS  Google Scholar 

  2. Latgé, J. P. Aspergillus fumigatus and aspergillosis. Clin. Microbiol. Rev. 12, 310–350 (1999)

    Article  Google Scholar 

  3. Lin, S. J., Schranz, J. & Teutsch, S. M. Aspergillosis case-fatality rate: systematic review of the literature. Clin. Infect. Dis. 32, 358–366 (2001)

    Article  CAS  Google Scholar 

  4. Anderson, M. J., Brookman, J. L. & Denning, D. W. in Genomics of Plants and Fungi (eds Prade, R.A. & Bohnert, B.J.) 1–39 (Marcel Dekker, 2003)

    Google Scholar 

  5. Dyer, P. S. & Paoletti, M. Reproduction in Aspergillus fumigatus: sexuality in a supposedly asexual species? Med. Mycol. 43 (Suppl. 1). 7–14 (2005)

    Article  Google Scholar 

  6. Varga, J. & Tóth, B. Genetic variability and reproductive mode of Aspergillus fumigatus . Infect. Genet. Evol. 3, 3–17 (2003)

    Article  CAS  Google Scholar 

  7. Pringle, A. et al. Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus . Evolution 59, 1886–1899 (2005)

    Article  CAS  Google Scholar 

  8. Paoletti, M. et al. Evidence for sexuality in the opportunistic human pathogen Aspergillus fumigatus . Curr. Biol. 15, 1242–1248 (2005)

    Article  CAS  Google Scholar 

  9. Nierman, W. C. et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus . Nature 438, 1151–1156 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Galagan, J. E. et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae . Nature 438, 1105–1115 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Latgé, J. P. The pathobiology of Aspergillus fumigatus . Trends Microbiol. 9, 382–389 (2001)

    Article  Google Scholar 

  12. Rydholm, C., Szakacs, G. & Lutzoni, F. Low genetic variation and no detectable population structure in Aspergillus fumigatus compared to closely related Neosartorya species. Eukaryot. Cell 5, 650–657 (2006)

    Article  CAS  Google Scholar 

  13. Debuchy, R. & Turgeon, B. G. in The Mycota I: Growth, Differentiation and Sexuality (eds Kües U. & Fischer, R.) 293–323 (Springer, 2006)

    Book  Google Scholar 

  14. Idnurm, A., Walton, F. J., Floyd, A. & Heitman, J. Identification of the sex genes in an early diverged fungus. Nature 451, 193–196 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Dyer, P. S., Ingram, D. S. & Johnstone, K. The control of sexual morphogenesis in the Ascomycotina. Biol. Rev. Camb. Phil. Soc. 67, 421–458 (1992)

    Article  Google Scholar 

  16. Paoletti, M. et al. Mating type and the genetic basis of self-fertility in the model fungus Aspergillus nidulans . Curr. Biol. 17, 1384–1389 (2007)

    Article  CAS  Google Scholar 

  17. Bain, J. M. et al. Multilocus sequence typing of the pathogenic fungus Aspergillus fumigatus . J. Clin. Microbiol. 45, 1469–1477 (2007)

    Article  CAS  Google Scholar 

  18. O’Gorman, C. M. & Fuller, H. T. Prevalence of culturable airborne spores of selected allergenic and pathogenic fungi in outdoor air. Atmos. Environ. 42, 4355–4368 (2008)

    Article  ADS  Google Scholar 

  19. Balajee, S. A., Nickle, D., Varga, J. & Marr, K. A. Molecular studies reveal frequent misidentification of Aspergillus fumigatus by morphotyping. Eukaryot. Cell 5, 1705–1712 (2006)

    Article  CAS  Google Scholar 

  20. Samson, R. A., Hong, S., Peterson, S. W., Frisvad, J. C. & Varga, J. Polyphasic taxonomy of Aspergillus section Fumigati and its teleomorph Neosartorya . Stud. Mycol. 59, 147–203 (2007)

    Article  CAS  Google Scholar 

  21. Dyer, P. S. in Sex in Fungi: Molecular Determination and Evolutionary Principles (eds Heitman, J., Kronstad, J.W., Taylor, J.W. & Casselton, L.A.) 123–142 (ASM Press, 2007)

    Google Scholar 

  22. Robert, V. et al. CBS Yeasts Database (Centraalbureau voor Schimmelcultures, Utrecht, 2007)

    Google Scholar 

  23. Takada, M. & Udagawa, S. A new species of heterothallic Neosartorya . Mycotaxon 24, 395–402 (1985)

    Google Scholar 

  24. Kwon-Chung, K. J. & Kim, S. J. A second heterothallic Aspergillus . Mycologia 66, 628–638 (1974)

    Article  CAS  Google Scholar 

  25. Pyrzak, W., Miller, K. Y. & Miller, B. L. The mating type protein Mat1-2 from asexual Aspergillus fumigatus drives sexual reproduction in fertile Aspergillus nidulans . Eukaryot. Cell 7, 1029–1040 (2008)

    Article  CAS  Google Scholar 

  26. Magee, P. T. & Magee, B. B. Through a glass opaquely: the biological significance of mating in Candida albicans . Curr. Opin. Microbiol. 7, 661–665 (2004)

    Article  CAS  Google Scholar 

  27. Lucas, J. A., Dyer, P. S. & Murray, T. Pathogenicity, host specificity, and population biology of Tapesia spp. causal agents of eyespot disease of cereals. Adv. Bot. Res. 33, 225–258 (2000)

    Article  CAS  Google Scholar 

  28. Ware, S. B. et al. Discovery of a functional Mycosphaerella teleomorph in the presumed asexual barley pathogen Septoria passerinii . Fungal Genet. Biol. 44, 389–397 (2007)

    Article  CAS  Google Scholar 

  29. Fedorova, N. D. et al. Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus . PLoS Genet. 4 10.1371/journal.pgen.1000046 (2008)

  30. Taylor, J. W., Geiser, D. M., Burt, A. & Koufopanou, V. The evolutionary biology and population genetics underlying fungal strain typing. Clin. Microbiol. Rev. 12, 126–146 (1999)

    Article  CAS  Google Scholar 

  31. Klich, M. A. Identification of Common Aspergillus Species (Centraalbureau voor Schimmelcultures, Utrecht, 2002)

    Google Scholar 

  32. Kornerup, A. & Wanscher, J. H. Methuen Handbook of Colour 3rd edn (Eyre Methuen, 1978)

    Google Scholar 

  33. Seymour, F. A. et al. Breeding systems in the lichen-forming fungal genus Cladonia . Fungal Genet. Biol. 42, 554–563 (2005)

    Article  CAS  Google Scholar 

  34. Honegger, R., Zippler, U., Gansner, H. & Scherrer, S. Mating systems in the genus Xanthoria (lichen-forming ascomycetes). Mycol. Res. 108, 480–488 (2004)

    Article  CAS  Google Scholar 

  35. Milgroom, M. G. Recombination and the multilocus structure of fungal pathogens. Annu. Rev. Phytopathol. 34, 457–477 (1996)

    Article  CAS  Google Scholar 

  36. Fisher, R. A. Statistical Methods for Research Workers 7th edn (Oliver & Boyd, 1938)

    MATH  Google Scholar 

  37. Murtagh, G. J., Dyer, P. S., McClure, P. C. & Crittenden, P. D. Use of randomly amplified polymorphic DNA markers as a tool to study variation in lichen-forming fungi. Lichenologist 31, 257–267 (1999)

    Article  Google Scholar 

  38. Anderson, M. J., Gull, K. & Denning, D. W. Molecular typing by random amplification of polymorphic DNA and M13 southern hybridization of related paired isolates of Aspergillus fumigatus . J. Clin. Microbiol. 34, 87–93 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Aufauvre-Brown, A., Cohen, J. & Holden, D. W. Use of random amplified polymorphic DNA markers to distinguish isolates of Aspergillus fumigatus . J. Clin. Microbiol. 30, 2991–2993 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin, D. et al. Comparison of three typing methods for clinical and environmental isolates of Aspergillus fumigatus . J. Clin. Microbiol. 33, 1596–1601 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Weising, K., Nybom, H., Wolff, K. & Meyer, W. DNA Fingerprinting in Plants and Fungi (CRC Press, 1995)

    Google Scholar 

  42. Pavlíček, A., Hrdá, Š. & Flegr, J. FreeTree – a freeware program for construction of phylogenetic trees on the basis of distance data and for bootstrap/jacknife analysis of the tree robustness. Application in the RAPD analysis of genus Frenkelia . Folia Biol. Prague 45, 97–99 (1999)

    Google Scholar 

  43. Dyer, P. S., Nicholson, P., Rezanoor, H. N., Lucas, J. A. & Peberdy, J. F. Two-allele heterothallism in Tapesia yallundae, the teleomorph of the cereal eyespot pathogen Pseudocercosporella herpotrichoides . Physiol. Mol. Plant Pathol. 43, 403–414 (1993)

    Article  Google Scholar 

  44. Kema, G. H. J., Verstappen, E. C. P., Todorova, M. & Waalwijk, C. Successful crosses and molecular tetrad and progeny analysis demonstrate heterothallism in Mycosphaerella graminicola . Curr. Genet. 30, 251–258 (1996)

    Article  CAS  Google Scholar 

  45. Murtagh, G. J., Dyer, P. S. & Crittenden, P. D. Sex and the single lichen. Nature 404, 564 (2000)

    Article  ADS  CAS  Google Scholar 

  46. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)

    Article  CAS  Google Scholar 

  47. Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. S41, 95–98 (1999)

    Google Scholar 

Download references

Acknowledgements

We thank S. A. Balajee for access to unpublished data, C. Duggan for assistance with the Latin diagnosis, and C. O’Connell for taking the scanning electron micrographs. This work was supported by an IRCSET Postgraduate Research Scholarship, an EC Marie Curie Training Fellowship and a grant from the British Mycological Society to C.O’G.

Author Contributions C.O’G., H.T.F. and P.S.D. designed the experiments. C.O’G. performed most of the experiments. C.O’G. and P.S.D. analysed the results and wrote the manuscript. All authors contributed to editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Céline M. O’Gorman or Paul S. Dyer.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary Figure 1, Supplementary Tables 1-5, Supplementary Discussion and additional references. (PDF 658 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Gorman, C., Fuller, H. & Dyer, P. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 457, 471–474 (2009). https://doi.org/10.1038/nature07528

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07528

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing