Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The replisome uses mRNA as a primer after colliding with RNA polymerase

Abstract

Replication forks are impeded by DNA damage and protein–nucleic acid complexes such as transcribing RNA polymerase. For example, head-on collision of the replisome with RNA polymerase results in replication fork arrest. However, co-directional collision of the replisome with RNA polymerase has little or no effect on fork progression. Here we examine co-directional collisions between a replisome and RNA polymerase in vitro. We show that the Escherichia coli replisome uses the RNA transcript as a primer to continue leading-strand synthesis after the collision with RNA polymerase that is displaced from the DNA. This action results in a discontinuity in the leading strand, yet the replisome remains intact and bound to DNA during the entire process. These findings underscore the notable plasticity by which the replisome operates to circumvent obstacles in its path and may explain why the leading strand is synthesized discontinuously in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Leading-strand synthesis is interrupted by a co-directional RNA polymerase.
Figure 2: The replisome extends the transcript of a co-directional RNA polymerase.
Figure 3: The replisome remains intact and displaces a co-directional RNA polymerase from the DNA.
Figure 4: Replisome bypass of a co-directional E. coli RNAP elongation complex.
Figure 5: Model of replisome bypass of a co-directional RNA polymerase.

Similar content being viewed by others

References

  1. Mirkin, E. V. & Mirkin, S. M. Replication fork stalling at natural impediments. Microbiol. Mol. Biol. Rev. 71, 13–35 (2007)

    Article  CAS  Google Scholar 

  2. Rudolph, C. J., Dhillon, P., Moore, T. & Lloyd, R. G. Avoiding and resolving conflicts between DNA replication and transcription. DNA Repair (Amst.) 6, 981–993 (2007)

    Article  CAS  Google Scholar 

  3. Cox, M. M. et al. The importance of repairing stalled replication forks. Nature 404, 37–41 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Cox, M. M. Recombinational DNA repair of damaged replication forks in Escherichia coli: questions. Annu. Rev. Genet. 35, 53–82 (2001)

    Article  CAS  Google Scholar 

  5. Brewer, B. J. When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell 53, 679–686 (1988)

    Article  CAS  Google Scholar 

  6. Jarosz, D. F., Beuning, P. J., Cohen, S. E. & Walker, G. C. Y-family DNA polymerases in Escherichia coli. Trends Microbiol. 15, 70–77 (2007)

    Article  CAS  Google Scholar 

  7. Goodman, M. F. Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu. Rev. Biochem. 71, 17–50 (2002)

    Article  CAS  Google Scholar 

  8. Tippin, B., Pham, P. & Goodman, M. F. Error-prone replication for better or worse. Trends Microbiol. 12, 288–295 (2004)

    Article  CAS  Google Scholar 

  9. Lusetti, S. L. & Cox, M. M. The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu. Rev. Biochem. 71, 71–100 (2002)

    Article  CAS  Google Scholar 

  10. Kornberg, A. & Baker, T. A. DNA Replication 2nd edn 246 (W. H. Freeman & Co, 1992)

    Google Scholar 

  11. Breier, A. M., Weier, H. U. & Cozzarelli, N. R. Independence of replisomes in Escherichia coli chromosomal replication. Proc. Natl Acad. Sci. USA 102, 3942–3947 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474 (1997)

    Article  CAS  Google Scholar 

  13. Rocha, E. P. & Danchin, A. Essentiality, not expressiveness, drives gene-strand bias in bacteria. Nature Genet. 34, 377–378 (2003)

    Article  CAS  Google Scholar 

  14. Rocha, E. P. & Danchin, A. Gene essentiality determines chromosome organisation in bacteria. Nucleic Acids Res. 31, 6570–6577 (2003)

    Article  CAS  Google Scholar 

  15. Mirkin, E. V. & Mirkin, S. M. Mechanisms of transcription-replication collisions in bacteria. Mol. Cell. Biol. 25, 888–895 (2005)

    Article  CAS  Google Scholar 

  16. Wang, J. D., Berkmen, M. B. & Grossman, A. D. Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis. Proc. Natl Acad. Sci. USA 104, 5608–5613 (2007)

    Article  ADS  CAS  Google Scholar 

  17. Prado, F. & Aguilera, A. Impairment of replication fork progression mediates RNA polII transcription-associated recombination. EMBO J. 24, 1267–1276 (2005)

    Article  CAS  Google Scholar 

  18. Kobayashi, T. The replication fork barrier site forms a unique structure with Fob1p and inhibits the replication fork. Mol. Cell. Biol. 23, 9178–9188 (2003)

    Article  CAS  Google Scholar 

  19. Deshpande, A. M. & Newlon, C. S. DNA replication fork pause sites dependent on transcription. Science 272, 1030–1033 (1996)

    Article  ADS  CAS  Google Scholar 

  20. French, S. Consequences of replication fork movement through transcription units in vivo.. Science 258, 1362–1365 (1992)

    Article  ADS  CAS  Google Scholar 

  21. Vilette, D., Ehrlich, S. D. & Michel, B. Transcription-induced deletions in plasmid vectors: M13 DNA replication as a source of instability. Mol. Gen. Genet. 252, 398–403 (1996)

    Article  CAS  Google Scholar 

  22. Huvet, M. et al. Human gene organization driven by the coordination of replication and transcription. Genome Res. 17, 1278–1285 (2007)

    Article  CAS  Google Scholar 

  23. Liu, B. & Alberts, B. M. Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. Science 267, 1131–1137 (1995)

    Article  ADS  CAS  Google Scholar 

  24. Liu, B. et al. The DNA replication fork can pass RNA polymerase without displacing the nascent transcript. Nature 366, 33–39 (1993)

    Article  ADS  CAS  Google Scholar 

  25. Liu, B., Wong, M. L. & Alberts, B. A transcribing RNA polymerase molecule survives DNA replication without aborting its growing RNA chain. Proc. Natl Acad. Sci. USA 91, 10660–10664 (1994)

    Article  ADS  CAS  Google Scholar 

  26. Ogawa, T. & Okazaki, T. Discontinuous DNA replication. Annu. Rev. Biochem. 49, 421–457 (1980)

    Article  CAS  Google Scholar 

  27. Wang, T. C. Discontinuous or semi-discontinuous DNA replication in Escherichia coli? Bioessays 27, 633–636 (2005)

    Article  CAS  Google Scholar 

  28. Johnson, A. & O’Donnell, M. Cellular DNA replicases: components and dynamics at the replication fork. Annu. Rev. Biochem. 74, 283–315 (2005)

    Article  CAS  Google Scholar 

  29. Pomerantz, R. T. & O’Donnell, M. Replisome mechanics: insights into a twin DNA polymerase machine. Trends Microbiol. 15, 156–164 (2007)

    Article  CAS  Google Scholar 

  30. Steitz, T. A. The structural basis of the transition from initiation to elongation phases of transcription, as well as translocation and strand separation, by T7 RNA polymerase. Curr. Opin. Struct. Biol. 14, 4–9 (2004)

    Article  CAS  Google Scholar 

  31. Mentesana, P. E., Chin-Bow, S. T., Sousa, R. & McAllister, W. T. Characterization of halted T7 RNA polymerase elongation complexes reveals multiple factors that contribute to stability. J. Mol. Biol. 302, 1049–1062 (2000)

    Article  CAS  Google Scholar 

  32. Jiang, M., Rong, M., Martin, C. & McAllister, W. T. Interrupting the template strand of the T7 promoter facilitates translocation of the DNA during initiation, reducing transcript slippage and the release of abortive products. J. Mol. Biol. 310, 509–522 (2001)

    Article  CAS  Google Scholar 

  33. Uptain, S. M., Kane, C. M. & Chamberlin, M. J. Basic mechanisms of transcript elongation and its regulation. Annu. Rev. Biochem. 66, 117–172 (1997)

    Article  CAS  Google Scholar 

  34. Trautinger, B. W., Jaktaji, R. P., Rusakova, E. & Lloyd, R. G. RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription. Mol. Cell 19, 247–258 (2005)

    Article  CAS  Google Scholar 

  35. Stukenberg, P. T., Turner, J. & O'Donnell, M. An explanation for lagging strand replication: polymerase hopping among DNA sliding clamps. Cell 78, 877–887 (1994)

    Article  CAS  Google Scholar 

  36. Keiler, K. C. Biology of trans-translation. Annu. Rev. Microbiol. 62, 133–151 (2008)

    Article  CAS  Google Scholar 

  37. Okazaki, R. et al. Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. Proc. Natl Acad. Sci. USA 59, 598–605 (1968)

    Article  ADS  CAS  Google Scholar 

  38. Sternglanz, R., Wang, H. F. & Donegan, J. J. Evidence that both growing DNA chains at a replication fork are synthesized discontinuously. Biochemistry 15, 1838–1843 (1976)

    Article  CAS  Google Scholar 

  39. Pauling, C. & Hamm, L. Properties of a temperature-sensitive, radiation-sensitive mutant of Escherichia coli. II. DNA replication. Proc. Natl Acad. Sci. USA 64, 1195–1202 (1969)

    Article  ADS  CAS  Google Scholar 

  40. Gottesman, M. M., Hicks, M. L. & Gellert, M. Genetics and function of DNA ligase in Escherichia coli. J. Mol. Biol. 77, 531–547 (1973)

    Article  CAS  Google Scholar 

  41. Konrad, E. B., Modrich, P. & Lehman, I. R. Genetic and enzymatic characterization of a conditional lethal mutant of Escherichia coli K12 with a temperature-sensitive DNA ligase. J. Mol. Biol. 77, 519–529 (1973)

    Article  CAS  Google Scholar 

  42. Okazaki, R., Arisawa, M. & Sugino, A. Slow joining of newly replicated DNA chains in DNA polymerase I-deficient Escherichia coli mutants. Proc. Natl Acad. Sci. USA 68, 2954–2957 (1971)

    Article  ADS  CAS  Google Scholar 

  43. Olivera, R. M. & Bonhoeffer, E. Replication of Escherichia coli requires DNA polymerase I. Nature 250, 513–514 (1974)

    Article  ADS  CAS  Google Scholar 

  44. Wang, T. C. & Smith, K. C. Discontinuous DNA replication in a lig-7 strain of Escherichia coli is not the result of mismatch repair, nucleotide-excision repair, or the base-excision repair of DNA uracil. Biochem. Biophys. Res. Commun. 165, 685–688 (1989)

    Article  CAS  Google Scholar 

  45. Wang, T. C. & Chen, S. H. Okazaki DNA fragments contain equal amounts of lagging-strand and leading-strand sequences. Biochem. Biophys. Res. Commun. 198, 844–849 (1994)

    Article  CAS  Google Scholar 

  46. Heller, R. C. & Marians, K. J. Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439, 557–562 (2006)

    Article  ADS  CAS  Google Scholar 

  47. Heller, R. C. & Marians, K. J. Replisome assembly and the direct restart of stalled replication forks. Nature Rev. Mol. Cell Biol. 7, 932–943 (2006)

    Article  CAS  Google Scholar 

  48. Heller, R. C. & Marians, K. J. The disposition of nascent strands at stalled replication forks dictates the pathway of replisome loading during restart. Mol. Cell 17, 733–743 (2005)

    Article  CAS  Google Scholar 

  49. McInerney, P. & O’Donnell, M. Functional uncoupling of twin polymerases: mechanism of polymerase dissociation from a lagging-strand block. J. Biol. Chem. 279, 21543–21551 (2004)

    Article  CAS  Google Scholar 

  50. Severinov, K., Mooney, R., Darst, S. A. & Landick, R. Tethering of the large subunits of Escherichia coli RNA polymerase. J. Biol. Chem. 272, 24137–24140 (1997)

    Article  CAS  Google Scholar 

  51. Severinov, K., Mooney, R., Darst, S. A. & Landick, R. Tethering of the large subunits of Escherichia coli RNA polymerase. J. Biol. Chem. 272, 24137–24140 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to W. T. McAllister and R. Castagna for providing T7 RNAP, and to S. Darst and L. Westblade for providing E. coli RNAP proteins and plasmids. This work was supported by a grant from the National Institutes of Health (M.O.D.) and by a Marie-Josee and Henry Kravis Fellowship at the Rockefeller University (R.T.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike O’Donnell.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-5 with Legends. (PDF 1485 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pomerantz, R., O’Donnell, M. The replisome uses mRNA as a primer after colliding with RNA polymerase. Nature 456, 762–766 (2008). https://doi.org/10.1038/nature07527

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07527

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing