Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A role for Rhesus factor Rhcg in renal ammonium excretion and male fertility

Abstract

The kidney has an important role in the regulation of acid–base homeostasis. Renal ammonium production and excretion are essential for net acid excretion under basal conditions and during metabolic acidosis. Ammonium is secreted into the urine by the collecting duct, a distal nephron segment where ammonium transport is believed to occur by non-ionic NH3 diffusion coupled to H+ secretion. Here we show that this process is largely dependent on the Rhesus factor Rhcg. Mice lacking Rhcg have abnormal urinary acidification due to impaired ammonium excretion on acid loading—a feature of distal renal tubular acidosis. In vitro microperfused collecting ducts of Rhcg-/- acid-loaded mice show reduced apical permeability to NH3 and impaired transepithelial NH3 transport. Furthermore, Rhcg is localized in epididymal epithelial cells and is required for normal fertility and epididymal fluid pH. We anticipate a critical role for Rhcg in ammonium handling and pH homeostasis both in the kidney and the male reproductive tract.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene targeting of Rhcg.
Figure 2: Impaired acid-stress handling in Rhcg -/- mice.
Figure 3: Reduced NH 3 permeability of microperfused collecting ducts segments from Rhcg -/- acid-challenged mice.
Figure 4: Rhcg in the male genital tract.

Similar content being viewed by others

References

  1. Butterworth, R. F. Hepatic encephalopathy. Alcohol Res. Health 27, 240–246 (2003)

    PubMed  Google Scholar 

  2. DuBose, T. D., Good, D. W., Hamm, L. L. & Wall, S. M. Ammonium transport in the kidney: new physiological concepts and their clinical implications. J. Am. Soc. Nephrol. 1, 1193–1203 (1991)

    PubMed  Google Scholar 

  3. Hamm, L. L. & Simon, E. E. Roles and mechanisms of urinary buffer excretion. Am. J. Physiol. 253, F595–F605 (1987)

    CAS  PubMed  Google Scholar 

  4. Knepper, M. A. NH4 + transport in the kidney. Kidney Int. Suppl. 33S95–S102 (1991)

  5. Weiner, I. D. & Hamm, L. L. Molecular mechanisms of renal ammonia transport. Annu. Rev. Physiol. 69, 317–340 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pitts, R. F. The renal excretion of acid. Fed. Proc. 7, 418–426 (1948)

    CAS  PubMed  Google Scholar 

  7. Sartorius, O. W., Roemmelt, J. C., Pitts, R. F., Calhoon, D. & Miner, P. The renal regulation of acid-base balance in man. IV. The nature of the renal compensations in ammonium chloride acidosis. J. Clin. Invest. 28, 423–439 (1949)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rodriguez Soriano, J. Renal tubular acidosis: the clinical entity. J. Am. Soc. Nephrol. 13, 2160–2170 (2002)

    Article  PubMed  Google Scholar 

  9. Laing, C. M., Toye, A. M., Capasso, G. & Unwin, R. J. Renal tubular acidosis: developments in our understanding of the molecular basis. Int. J. Biochem. Cell Biol. 37, 1151–1161 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. Marini, A. M., Vissers, S., Urrestarazu, A. & Andre, B. Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae . EMBO J. 13, 3456–3463 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ninnemann, O., Jauniaux, J. C. & Frommer, W. B. Identification of a high affinity NH4 + transporter from plants. EMBO J. 13, 3464–3471 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marini, A. M., Urrestarazu, A., Beauwens, R. & Andre, B. The Rh (rhesus) blood group polypeptides are related to NH4 + transporters. Trends Biochem. Sci. 22, 460–461 (1997)

    Article  CAS  PubMed  Google Scholar 

  13. Levine, P. & Stetson, R. E. An unusual case of intra-group agglutination. J. Am. Med. Assoc. 113, 126–127 (1939)

    Article  Google Scholar 

  14. Le van Kim, C. et al. Molecular cloning and primary structure of the human blood group RhD polypeptide. Proc. Natl Acad. Sci. USA 89, 10925–10929 (1992)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Cherif-Zahar, B. et al. Organization of the gene (RHCE) encoding the human blood group RhCcEe antigens and characterization of the promoter region. Genomics 19, 68–74 (1994)

    Article  CAS  PubMed  Google Scholar 

  16. Ridgwell, K. et al. Isolation of cDNA clones for a 50 kDa glycoprotein of the human erythrocyte membrane associated with Rh (rhesus) blood-group antigen expression. Biochem. J. 287, 223–228 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marini, A. M. et al. The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nature Genet. 26, 341–344 (2000)

    Article  CAS  PubMed  Google Scholar 

  18. Liu, Z. et al. Characterization of human RhCG and mouse Rhcg as novel nonerythroid Rh glycoprotein homologues predominantly expressed in kidney and testis. J. Biol. Chem. 275, 25641–25651 (2000)

    Article  CAS  PubMed  Google Scholar 

  19. Liu, Z., Peng, J., Mo, R., Hui, C. & Huang, C. H. Rh type B glycoprotein is a new member of the Rh superfamily and a putative ammonia transporter in mammals. J. Biol. Chem. 276, 1424–1433 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. Quentin, F. et al. RhBG and RhCG, the putative ammonia transporters, are expressed in the same cells in the distal nephron. J. Am. Soc. Nephrol. 14, 545–554 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. Verlander, J. W. et al. Localization of the ammonium transporter proteins RhBG and RhCG in mouse kidney. Am. J. Physiol. Renal Physiol. 284, F323–F337 (2003)

    Article  CAS  PubMed  Google Scholar 

  22. Eladari, D. et al. Expression of RhCG, a new putative NH3/NH4 + transporter, along the rat nephron. J. Am. Soc. Nephrol. 13, 1999–2008 (2002)

    Article  CAS  PubMed  Google Scholar 

  23. Bakouh, N. et al. NH3 is involved in the NH4 + transport induced by the functional expression of the human Rh C glycoprotein. J. Biol. Chem. 279, 15975–15983 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. Benjelloun, F. et al. Expression of the human erythroid Rh glycoprotein (RhAG) enhances both NH3 and NH4 + transport in HeLa cells. Pflugers Arch. 450, 155–167 (2005)

    Article  CAS  PubMed  Google Scholar 

  25. Nakhoul, N. L. et al. Characteristics of renal Rhbg as an NH4 + transporter. Am. J. Physiol. Renal Physiol. 288, F170–F181 (2005)

    Article  CAS  PubMed  Google Scholar 

  26. Zidi-Yahiaoui, N. et al. Human Rhesus B and Rhesus C glycoproteins: properties of facilitated ammonium transport in recombinant kidney cells. Biochem. J. 391, 33–40 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mak, D. O., Dang, B., Weiner, I. D., Foskett, J. K. & Westhoff, C. M. Characterization of ammonia transport by the kidney Rh glycoproteins RhBG and RhCG. Am. J. Physiol. Renal Physiol. 290, F297–F305 (2006)

    Article  CAS  PubMed  Google Scholar 

  28. Mayer, M. et al. Different transport mechanisms in plant and human AMT/Rh-type ammonium transporters. J. Gen. Physiol. 127, 133–144 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Westhoff, C. M., Ferreri-Jacobia, M., Mak, D. O. & Foskett, J. K. Identification of the erythrocyte Rh blood group glycoprotein as a mammalian ammonium transporter. J. Biol. Chem. 277, 12499–12502 (2002)

    Article  CAS  PubMed  Google Scholar 

  30. Chambrey, R. et al. Genetic ablation of Rhbg in the mouse does not impair renal ammonium excretion. Am. J. Physiol. Renal Physiol. 289, F1281–F1290 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. Endeward, V., Cartron, J. P., Ripoche, P. & Gros, G. RhAG protein of the Rhesus complex is a CO2 channel in the human red cell membrane. FASEB J. 22, 64–73 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. Soupene, E., Inwood, W. & Kustu, S. Lack of the Rhesus protein Rh1 impairs growth of the green alga Chlamydomonas reinhardtii at high CO2 . Proc. Natl Acad. Sci. USA 101, 7787–7792 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Ji, Q. et al. CeRh1 (rhr-1) is a dominant Rhesus gene essential for embryonic development and hypodermal function in Caenorhabditis elegans . Proc. Natl Acad. Sci. USA 103, 5881–5886 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Missner, A. et al. Carbon dioxide transport through membranes. J. Biol. Chem. 283, 25340–25347 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. May, R. C., Kelly, R. A. & Mitch, W. E. Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid-dependent mechanism. J. Clin. Invest. 77, 614–621 (1986)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bevensee, M. O. & Boron, W. F. Control of Intracellular pH (eds Alpern, R. J. & Hebert, S. C.) 1429–1490 (Elsevier Inc., 2008)

    Google Scholar 

  37. Pastor-Soler, N., Pietrement, C. & Breton, S. Role of acid/base transporters in the male reproductive tract and potential consequences of their malfunction. Physiology (Bethesda) 20, 417–428 (2005)

    CAS  Google Scholar 

  38. Karet, F. E. Inherited distal renal tubular acidosis. J. Am. Soc. Nephrol. 13, 2178–2184 (2002)

    Article  CAS  PubMed  Google Scholar 

  39. Kim, S. C. & Kim, H. W. Effects of nitrogenous components of urine on sperm motility: an in vitro study. Int. J. Androl. 21, 29–33 (1998)

    Article  CAS  PubMed  Google Scholar 

  40. van Straaten, H. W. et al. Cellular concentrations of glutamine synthetase in murine organs. Biochem. Cell Biol. 84, 215–231 (2006)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Drèze, B. André and P. Gabant for their contribution to the initial step of this study. We thank H. Mezdour, L. Pouilly and P. Persoons for microinjection experiments, B. Pajak for help in broad-spectrum histological assessment, V. Beaujean, Y. Cnops, H. Debaix and T. Nishino for excellent technical assistance, and A. Tamah and M.-F. Vincent for amino acid chromatography. These studies were supported by the Belgian agencies FNRS and FRSM (3.4.546.04.F, 3.4.635.05.F, 3.4592.06.F), the ‘Fonds Brachet-recherche’, the ‘Fonds Van Buuren’, the ‘Fondation Alphonse & Jean Forton’, a Concerted Research Action (05/10-328), an Inter-university Attraction Pole (IUAP P6/05), the Swiss National Science Foundation (31-109677), an INSERM grant, and the EuReGene and EUNEFRON (GA#201590) projects of the European Community (FP6 and FP7). S.Bi. was the recipient of a FRIA fellowship; H.B., A.M.M. and C.S. are Research fellow, Research associate and Research director of the FNRS, respectively.

Author Contributions S.Bi., J.S., C.S. and A.M.M. developed the concept of this study; all authors contributed to the intellectual design, execution and interpretation of the experiments; S.Bi. and A.M.M. wrote the paper with specific contribution of all authors and the particular involvement of O.D. and C.A.W. All authors analysed and discussed the data, and commented on the final version of the manuscript. S.Bi., H.B. and S.Bo. share first authorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria Marini.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary References, Supplementary Figures 1-3 with Legends and Supplementary Tables 1-6 (PDF 553 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biver, S., Belge, H., Bourgeois, S. et al. A role for Rhesus factor Rhcg in renal ammonium excretion and male fertility. Nature 456, 339–343 (2008). https://doi.org/10.1038/nature07518

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07518

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing