Negative feedback that improves information transmission in yeast signalling

Abstract

Haploid Saccharomyces cerevisiae yeast cells use a prototypic cell signalling system to transmit information about the extracellular concentration of mating pheromone secreted by potential mating partners. The ability of cells to respond distinguishably to different pheromone concentrations depends on how much information about pheromone concentration the system can transmit. Here we show that the mitogen-activated protein kinase Fus3 mediates fast-acting negative feedback that adjusts the dose response of the downstream system response to match the dose response of receptor-ligand binding. This ‘dose–response alignment’, defined by a linear relationship between receptor occupancy and downstream response, can improve the fidelity of information transmission by making downstream responses corresponding to different receptor occupancies more distinguishable and reducing amplification of stochastic noise during signal transmission. We also show that one target of the feedback is a previously uncharacterized signal-promoting function of the regulator of G-protein signalling protein Sst2. Our work suggests that negative feedback is a general mechanism used in signalling systems to align dose responses and thereby increase the fidelity of information transmission.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The pheromone response system.
Figure 2: Dose–response alignment makes responses more distinguishable.
Figure 3: Initial system dynamics indicate negative feedback.
Figure 4: Fus3 mediates negative feedback.
Figure 5: Dose–response alignment requires Fus3-mediated negative feedback.

References

  1. 1

    Dohlman, H. G. & Thorner, J. W. Regulation of G protein-initiated signal transduction in yeast: Paradigms and principles. Annu. Rev. Biochem. 70, 703–754 (2001)

    CAS  Article  Google Scholar 

  2. 2

    Jackson, C. L. & Hartwell, L. H. Courtship in S. cerevisiae: Both cell types choose mating partners by responding to the strongest pheromone signal. Cell 63, 1039–1051 (1990)

    CAS  Article  Google Scholar 

  3. 3

    Segall, J. E. Polarization of yeast cells in spatial gradients of alpha mating factor. Proc. Natl Acad. Sci. USA 90, 8332–8336 (1993)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Schrick, K., Garvik, B. & Hartwell, L. H. Mating in Saccharomyces cerevisiae: The role of the pheromone signal transduction pathway in the chemotropic response to pheromone. Genetics 147, 19–32 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Colman-Lerner, A. et al. Regulated cell-to-cell variation in a cell-fate decision system. Nature 437, 699–706 (2005)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Yi, T. M., Kitano, H. & Simon, M. I. A quantitative characterization of the yeast heterotrimeric G protein cycle. Proc. Natl Acad. Sci. USA 100, 10764–10769 (2003)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Cuatrecasas, P. Insulin–receptor interactions in adipose tissue cells: Direct measurement and properties. Proc. Natl Acad. Sci. USA 68, 1264–1268 (1971)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Kasai, M. & Changeux, J. P. In vitro excitation of purified membrane by cholinergic agonists. J. Membr. Biol. 6, 58–80 (1971)

    CAS  Article  Google Scholar 

  9. 9

    Amir, S. M., Carraway, T. F., Kohn, L. D. & Winand, R. J. The binding of thyrotropin to isolated bovine thyroid plasma membranes. J. Biol. Chem. 248, 4092–4100 (1973)

    CAS  PubMed  Google Scholar 

  10. 10

    Lin, S. Y. & Goodfriend, T. L. Angiotensin receptors. Am. J. Physiol. 218, 1319–1328 (1970)

    CAS  Article  Google Scholar 

  11. 11

    Knauer, D. J., Wiley, H. S. & Cunningham, D. D. Relationship between epidermal growth factor receptor occupancy and mitogenic response. Quantitative analysis using a steady state model system. J. Biol. Chem. 259, 5623–5631 (1984)

    CAS  PubMed  Google Scholar 

  12. 12

    Nagashima, T. et al. Quantitative transcriptional control of Erbb receptor signaling undergoes graded to biphasic response for cell differentiation. J. Biol. Chem. 282, 4045–4056 (2007)

    CAS  Article  Google Scholar 

  13. 13

    Simons, S. S., Oshima, H. & Szapary, D. Higher levels of control: Modulation of steroid hormone-regulated gene transcription. Mol. Endocrinol. 6, 995–1002 (1992)

    CAS  PubMed  Google Scholar 

  14. 14

    Rousseau, G. G. & Baxter, J. D. Glucocorticoid receptors. Monogr. Endocrinol. 12, 49–77 (1979)

    CAS  Article  Google Scholar 

  15. 15

    Bloom, E. et al. Nuclear binding of glucocorticoid receptors: Relations between cytosol binding, activation and the biological response. J. Steroid Biochem. 12, 175–184 (1980)

    CAS  Article  Google Scholar 

  16. 16

    Pedraza, J. M. & van Oudenaarden, A. Noise propagation in gene networks. Science 307, 1965–1969 (2005)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Black, H. S. Stabilized feed-back amplifiers. Electr. Eng. 53, 114–120 (1934)

    Article  Google Scholar 

  18. 18

    Bhalla, U. S., Ram, P. T. & Iyengar, R. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297, 1018–1023 (2002)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Black, J. W. & Leff, P. Operational models of pharmacological agonism. Proc. R. Soc. Lond. B 220, 141–162 (1983)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Savageau, M. A. Comparison of classical and autogenous systems of regulation in inducible operons. Nature 252, 546–549 (1974)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Becskei, A. & Serrano, L. Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Gordon, A. et al. Single-cell quantification of molecules and rates using open-source microscope-based cytometry. Nature Methods 4, 175–181 (2007)

    CAS  Article  Google Scholar 

  24. 24

    Gartner, A., Nasmyth, K. & Ammerer, G. Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of Fus3 and Kss1. Genes Dev. 6, 1280–1292 (1992)

    CAS  Article  Google Scholar 

  25. 25

    Tedford, K., Kim, S., Sa, D., Stevens, K. & Tyers, M. Regulation of the mating pheromone and invasive growth responses in yeast by two map kinase substrates. Curr. Biol. 7, 228–238 (1997)

    CAS  Article  Google Scholar 

  26. 26

    Miyawaki, A. & Tsien, R. Y. Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol. 327, 472–500 (2000)

    CAS  Article  Google Scholar 

  27. 27

    van Drogen, F., Stucke, V. M., Jorritsma, G. & Peter, M. Map kinase dynamics in response to pheromones in budding yeast. Nature Cell Biol. 3, 1051–1059 (2001)

    CAS  Article  Google Scholar 

  28. 28

    Bhattacharyya, R. P. et al. The ste5 scaffold allosterically modulates signaling output of the yeast mating pathway. Science 311, 822–826 (2006)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Maleri, S. et al. Persistent activation by constitutive Ste7 promotes Kss1-mediated invasive growth but fails to support Fus3-dependent mating in yeast. Mol. Cell. Biol. 24, 9221–9238 (2004)

    CAS  Article  Google Scholar 

  30. 30

    Gruhler, A. et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell. Proteomics 4, 310–327 (2005)

    CAS  Article  Google Scholar 

  31. 31

    Shao, D., Zheng, W., Qiu, W., Ouyang, Q. & Tang, C. Dynamic studies of scaffold-dependent mating pathway in yeast. Biophys. J. 91, 3986–4001 (2006)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Bishop, A. C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Ballon, D. R. et al. DEP-domain-mediated regulation of GPCR signaling responses. Cell 126, 1079–1093 (2006)

    CAS  Article  Google Scholar 

  34. 34

    Heximer, S. P. & Blumer, K. J. RGS proteins: Swiss army knives in seven-transmembrane domain receptor signaling networks. Sci. STKE 2007, pe2 (2007)

    Article  Google Scholar 

  35. 35

    May, L. T., Leach, K., Sexton, P. M. & Christopoulos, A. Allosteric modulation of G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 47, 1–51 (2007)

    CAS  Article  Google Scholar 

  36. 36

    Budas, G. R., Churchill, E. N. & Mochly-Rosen, D. Cardioprotective mechanisms of PKC isozyme-selective activators and inhibitors in the treatment of ischemia-reperfusion injury. Pharmacol. Res. 55, 523–536 (2007)

    CAS  Article  Google Scholar 

  37. 37

    Lindsley, C. W., Barnett, S. F., Layton, M. E. & Bilodeau, M. T. The PI3K/Akt pathway: Recent progress in the development of ATP-competitive and allosteric Akt kinase inhibitors. Curr. Cancer Drug Targets 8, 7–18 (2008)

    CAS  Article  Google Scholar 

  38. 38

    Shannon, C. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    MathSciNet  Article  Google Scholar 

  39. 39

    Bialek, W., Rieke, F., de Ruyter van Steveninck, R. R. & Warland, D. Reading a neural code. Science 252, 1854–1857 (1991)

    ADS  CAS  Article  Google Scholar 

  40. 40

    Tkacik, G., Callan, C. & Bialek, W. Information flow and optimization in transcriptional regulation. Proc. Natl. Acad. Sci. U.S.A. 26, 12265–12270 (2008)

    ADS  Article  Google Scholar 

  41. 41

    Gregor, T., Tank, D. W., Wieschaus, E. F. & Bialek, W. Probing the limits to positional information. Cell 130, 153–164 (2007)

    CAS  Article  Google Scholar 

  42. 42

    Ausubel, F. M. et al. Current Protocols in Molecular Biology (John Wiley & Sons, Inc., 1987–2008)

    Google Scholar 

  43. 43

    Guthrie, C. & Fink, G. R. Methods in Enzymology, Guide to Yeast Genetics and Molecular Biology (Academic, 1991)

    Google Scholar 

  44. 44

    Brun, R., Couet, O., Vandroni, C. & Zanarini, O. PAW Physics Analysis Workstation CERN program library entry q121 (CERN, Geneva, 1989)

  45. 45

    Jenness, D. D., Burkholder, A. C. & Hartwell, L. H. Binding of alpha-factor pheromone to Saccharomyces cerevisiae a cells: Dissociation constant and number of binding sites. Mol. Cell. Biol. 6, 318–320 (1986)

    CAS  Article  Google Scholar 

  46. 46

    Bajaj, A. et al. A fluorescent α-factor analogue exhibits multiple steps on binding to its g protein coupled receptor in yeast. Biochemistry 43, 13564–13578 (2004)

    CAS  Article  Google Scholar 

  47. 47

    Andersson, J., Simpson, D. M., Qi, M., Wang, Y. & Elion, E. A. Differential input by Ste5 scaffold and Msg5 phosphatase route a MAPK cascade to multiple outcomes. EMBO J. 23, 2564–2576 (2004)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank P. Abola, S. Andrews, A. Arkin, M. Bowen, L. Buck, C. Denby, A. Gann, D. Meldrum, T. Mitchison, C. Pabo, M. Ptashne, M. Reese, O. Resnekov, C. Ryan, M. Snyder, T. Thomson, A. E. Tsong and M. Wilson for discussions and/or comments on the manuscript, and O. Resnekov for help in articulating the requirements for fluidic induction devices. Work, including that of M.H. at the University of Washington, was supported by the Alpha Project at the Center for Quantitative Genome Function, an NIH Center of Excellence in Genomic Science under grant P50 HG02370 from the National Human Genome Research Institute to R.B.

Author Contributions R.C.Y. performed the Ste5 translocation, loss of G-protein and Dig1–Ste12 FRET, MAP kinase phosphorylation, mRNA measurements, and the image-based measurements of system output. C.G.P. and A.G. noted and helped articulate the relationship of negative feedback to dose–response overlap. C.G.P. and R.C.Y. performed flow cytometric measurements. L.L. and A.G. contributed to discussions about mutual information calculations and analysis. R.C.Y. and A.G. performed data analysis on loss of FRET experiments. A.C.-L. and A.G. carried out extensive initial measurements of Ste5 recruitment. K.B. provided unpublished information about protein quantification useful in initial discussions about dose–response alignment. R.C.Y. and D.P. performed numerous measurements verifying protein abundance in other strains. E.S. constructed the inhibitor-sensitive fus3-as2 and kss1-as2 alleles. M.H. designed and built fluidic devices used to induce the system in response to articulated requirements. R.B. provided input into project direction, experimental design and interpretation of results. R.C.Y., C.G.P. and R.B. wrote the paper and guarantee the integrity of the results.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Richard C. Yu or Roger Brent.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and Data, Supplementary Tables S1-S4 and S6, Supplementary Figures and Legends S1-S14 and Supplementary References (PDF 4551 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yu, R., Pesce, C., Colman-Lerner, A. et al. Negative feedback that improves information transmission in yeast signalling. Nature 456, 755–761 (2008). https://doi.org/10.1038/nature07513

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing