Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chaperonin complex with a newly folded protein encapsulated in the folding chamber

Abstract

A subset of essential cellular proteins requires the assistance of chaperonins (in Escherichia coli, GroEL and GroES), double-ring complexes in which the two rings act alternately to bind, encapsulate and fold a wide range of nascent or stress-denatured proteins1,2,3,4,5. This process starts by the trapping of a substrate protein on hydrophobic surfaces in the central cavity of a GroEL ring6,7,8,9,10. Then, binding of ATP and co-chaperonin GroES to that ring ejects the non-native protein from its binding sites, through forced unfolding or other major conformational changes, and encloses it in a hydrophilic chamber for folding11,12,13,14,15. ATP hydrolysis and subsequent ATP binding to the opposite ring trigger dissociation of the chamber and release of the substrate protein3. The bacteriophage T4 requires its own version of GroES, gp31, which forms a taller folding chamber, to fold the major viral capsid protein gp23 (refs 16–20). Polypeptides are known to fold inside the chaperonin complex, but the conformation of an encapsulated protein has not previously been visualized. Here we present structures of gp23–chaperonin complexes, showing both the initial captured state and the final, close-to-native state with gp23 encapsulated in the folding chamber. Although the chamber is expanded, it is still barely large enough to contain the elongated gp23 monomer, explaining why the GroEL–GroES complex is not able to fold gp23 and showing how the chaperonin structure distorts to enclose a large, physiological substrate protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Asymmetric reconstructions of GroEL with non-native gp23 in one or both rings.
Figure 2: Asymmetric reconstructions of GroEL–gp31 without visible substrate, with gp23 in the open ring and with gp23 in both rings.
Figure 3: Folding chambers of the GroEL–gp23–gp31 complexes.
Figure 4: Substrate densities isolated from the binary and ternary complexes.

Similar content being viewed by others

Accession codes

Data deposits

The three-dimensional reconstructions for the two binary complexes and the three ternary complexes are deposited in the EBI-MSD EMD database with accession codes EMD-1544 through to EMD-1548.

References

  1. Houry, W. A. et al. Identification of in vivo substrates of the chaperonin GroEL. Nature 402, 147–154 (1999)

    Article  ADS  CAS  Google Scholar 

  2. Kerner, M. J. et al. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli . Cell 122, 209–220 (2005)

    Article  CAS  Google Scholar 

  3. Rye, H. S. et al. GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 97, 325–338 (1999)

    Article  CAS  Google Scholar 

  4. Sigler, P. B. et al. Structure and function in GroEL-mediated protein folding. Annu. Rev. Biochem. 67, 581–608 (1998)

    Article  CAS  Google Scholar 

  5. Horwich, A. L., Fenton, W. A., Chapman, E. & Farr, G. W. Two families of chaperonin: Physiology and mechanism. Annu. Rev. Cell Dev. Biol. 23, 115–145 (2007)

    Article  CAS  Google Scholar 

  6. Braig, K. et al. The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371, 578–586 (1994)

    Article  ADS  CAS  Google Scholar 

  7. Fenton, W. A., Kashi, Y., Furtak, K. & Horwich, A. L. Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371, 614–619 (1994)

    Article  ADS  CAS  Google Scholar 

  8. Lin, Z., Schwartz, F. P. & Eisenstein, E. The hydrophobic nature of GroEL-substrate binding. J. Biol. Chem. 270, 1011–1014 (1995)

    Article  CAS  Google Scholar 

  9. Farr, G. W. et al. Multivalent binding of nonnative substrate proteins by the chaperonin GroEL. Cell 100, 561–573 (2000)

    Article  CAS  Google Scholar 

  10. Elad, N. et al. Topologies of a substrate protein bound to the chaperonin GroEL. Mol. Cell 26, 415–426 (2007)

    Article  CAS  Google Scholar 

  11. Xu, Z., Horwich, A. L. & Sigler, P. B. The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex. Nature 388, 741–750 (1997)

    Article  ADS  CAS  Google Scholar 

  12. Motojima, F. et al. Substrate polypeptide presents a load on the apical domains of the chaperonin GroEL. Proc. Natl Acad. Sci. USA 101, 15005–15012 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Lin, Z. & Rye, H. S. Expansion and compression of a protein folding intermediate by GroEL. Mol. Cell 16, 23–34 (2004)

    Article  CAS  Google Scholar 

  14. Lin, Z., Madan, D. & Rye, H. S. GroEL stimulates protein folding through forced unfolding. Nature Struct. Mol. Biol. 15, 303–311 (2008)

    Article  CAS  Google Scholar 

  15. Mayhew, M. et al. Protein folding in the central cavity of the GroEL–GroES chaperonin complex. Nature 379, 420–426 (1996)

    Article  ADS  CAS  Google Scholar 

  16. Laemmli, U. K., Beguin, F. & Gujer-Kellenberger, G. A factor preventing the major head protein of bacteriophage T4 from random aggregation. J. Mol. Biol. 47, 69–85 (1970)

    Article  CAS  Google Scholar 

  17. van der Vies, S. M., Gatenby, A. A. & Georgopoulos, C. Bacteriophage T4 encodes a co-chaperonin that can substitute for Escherichia coli GroES in protein folding. Nature 368, 654–656 (1994)

    Article  ADS  CAS  Google Scholar 

  18. Hunt, J. F., van der Vies, S. M., Henry, L. & Deisenhofer, J. Structural adaptations in the specialized bacteriophage T4 co-chaperonin Gp31 expand the size of the Anfinsen cage. Cell 90, 361–371 (1997)

    Article  CAS  Google Scholar 

  19. Bakkes, P. J., Faber, B. W., van Heerikhuizen, H. & van der Vies, S. M. The T4-encoded cochaperonin, gp31, has unique properties that explain its requirement for the folding of the T4 major capsid protein. Proc. Natl Acad. Sci. USA 102, 8144–8149 (2005)

    Article  ADS  CAS  Google Scholar 

  20. Clare, D. K. et al. An expanded protein folding cage in the GroEL-gp31 complex. J. Mol. Biol. 358, 905–911 (2006)

    Article  CAS  Google Scholar 

  21. Elad, N., Clare, D. K., Saibil, H. R. & Orlova, E. V. Detection and separation of heterogeneity in molecular complexes by statistical analysis of their two-dimensional projections. J. Struct. Biol. 162, 108–120 (2008)

    Article  CAS  Google Scholar 

  22. van Duijn, E. et al. Monitoring macromolecular complexes involved in the chaperonin-assisted protein folding cycle by mass spectrometry. Nature Methods 2, 371–376 (2005)

    Article  CAS  Google Scholar 

  23. van Duijn, E., Heck, A. J. & van der Vies, S. M. Inter-ring communication allows the GroEL chaperonin complex to distinguish between different substrates. Protein Sci. 16, 956–965 (2007)

    Article  CAS  Google Scholar 

  24. Ranson, N. A. et al. Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes. Nature Struct. Mol. Biol. 13, 147–152 (2006)

    Article  CAS  Google Scholar 

  25. Fokine, A. et al. Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry. Proc. Natl Acad. Sci. USA 102, 7163–7168 (2005)

    Article  ADS  CAS  Google Scholar 

  26. van Duijn, E. et al. Tandem mass spectrometry of intact GroEL-substrate complexes reveals substrate-specific conformational changes in the trans ring. J. Am. Chem. Soc. 128, 4694–4702 (2006)

    Article  CAS  Google Scholar 

  27. Snyder, L. & Tarkowski, H. J. The N terminus of the head protein of T4 bacteriophage directs proteins to the GroEL chaperonin. J. Mol. Biol. 345, 375–386 (2005)

    Article  CAS  Google Scholar 

  28. Falke, S. et al. The 13 angstroms structure of a chaperonin GroEL-protein substrate complex by cryo-electron microscopy. J. Mol. Biol. 348, 219–230 (2005)

    Article  CAS  Google Scholar 

  29. Tang, Y. C. et al. Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 125, 903–914 (2006)

    Article  CAS  Google Scholar 

  30. Machida, K. et al. Hydrophilic residues 526KNDAAD531 in the flexible C-terminal region of the chaperonin GroEL are critical for substrate protein folding within the central cavity. J. Biol. Chem. 283, 6886–6896 (2008)

    Article  CAS  Google Scholar 

  31. Chaudhry, C. et al. Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: Function, structure and energetics. EMBO J. 22, 4877–4887 (2003)

    Article  CAS  Google Scholar 

  32. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003)

    Article  Google Scholar 

  33. Crowther, R. A., Henderson, R. & Smith, J. M. MRC image processing programs. J. Struct. Biol. 116, 9–16 (1996)

    Article  CAS  Google Scholar 

  34. Frank, J. et al. SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996)

    Article  CAS  Google Scholar 

  35. van Heel, M. et al. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996)

    Article  CAS  Google Scholar 

  36. Navaza, J. et al. On the fitting of model electron densities into EM reconstructions: A reciprocal-space formulation. Acta Crystallogr. D 58, 1820–1825 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Westlake, D. Houldershaw and L. Wang for computing and EM support. This work was carried out at the School of Crystallography, Birkbeck College, and was supported by a Wellcome Trust programme grant, EU 3D EM Network of Excellence and 3D Repertoire grants.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. M. van der Vies or H. R. Saibil.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-3 with Legends, Supplementary Table 1, Supplementary Notes and Discussion and Supplementary References (PDF 1537 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clare, D., Bakkes, P., van Heerikhuizen, H. et al. Chaperonin complex with a newly folded protein encapsulated in the folding chamber. Nature 457, 107–110 (2009). https://doi.org/10.1038/nature07479

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07479

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing