Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins


Cilia and flagella are highly conserved organelles that have diverse roles in cell motility and sensing extracellular signals. Motility defects in cilia and flagella often result in primary ciliary dyskinesia. However, the mechanisms underlying cilia formation and function, and in particular the cytoplasmic assembly of dyneins that power ciliary motility, are only poorly understood. Here we report a new gene, kintoun (ktu), involved in this cytoplasmic process. This gene was first identified in a medaka mutant, and found to be mutated in primary ciliary dyskinesia patients from two affected families as well as in the pf13 mutant of Chlamydomonas. In the absence of Ktu/PF13, both outer and inner dynein arms are missing or defective in the axoneme, leading to a loss of motility. Biochemical and immunohistochemical studies show that Ktu/PF13 is one of the long-sought proteins involved in pre-assembly of dynein arm complexes in the cytoplasm before intraflagellar transport loads them for the ciliary compartment.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Medaka ktu mutant.
Figure 2: Recessive loss-of-function KTU mutations.
Figure 3: PF13 is the Chlamydomonas homologue of Ktu.
Figure 4: Ktu binds to dyneins and Hsp70.

Accession codes

Primary accessions


Data deposits

The accession numbers are: medaka ktu, AB455535; human KTU, FJ158843; mouse ktu, AB455811; Chlamydomonas PF13 cDNA, AB455237; and Chlamydomonas PF13 genome, FJ160770.


  1. Okada, Y. et al. Mechanism of nodal flow: A conserved symmetry breaking event in left-right axis determination. Cell 121, 633–644 (2005)

    CAS  PubMed  Google Scholar 

  2. Fliegauf, M., Benzing, T. & Omran, H. When cilia go bad: cilia defects and ciliopathies. Nature Rev. Mol. Cell Biol. 8, 880–893 (2007)

    CAS  Google Scholar 

  3. Wilson, P. D. Polycystic kidney disease. N. Engl. J. Med. 350, 151–164 (2004)

    CAS  PubMed  Google Scholar 

  4. Zariwala, M. A., Knowles, M. R. & Omran, H. Genetic defects in ciliary structure and function. Annu. Rev. Physiol. 69, 423–450 (2007)

    CAS  PubMed  Google Scholar 

  5. Olbrich, H. et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nature Genet. 30, 143–144 (2002)

    CAS  PubMed  Google Scholar 

  6. Pennarun, G. et al. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am. J. Hum. Genet. 65, 1508–1519 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bartoloni, L. et al. Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc. Natl Acad. Sci. USA 99, 10282–10286 (2002)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Budny, B. et al. A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facial-digital type I syndrome. Hum. Genet. 120, 171–178 (2006)

    CAS  PubMed  Google Scholar 

  9. van Dorp, D. B., Wright, A. F., Carothers, A. D. & Bleeker-Wagemakers, E. M. A family with RP3 type of X-linked retinitis pigmentosa: an association with ciliary abnormalities. Hum. Genet. 88, 331–334 (1992)

    CAS  PubMed  Google Scholar 

  10. Duriez, B. et al. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia. Proc. Natl Acad. Sci. USA 104, 3336–3341 (2007)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wittbrodt, J., Shima, A. & Schartl, M. Medaka–a model organism from the far East. Nature Rev. Genet. 3, 53–64 (2002)

    CAS  PubMed  Google Scholar 

  12. Kasahara, M. et al. The medaka draft genome and insights into vertebrate genome evolution. Nature 447, 714–719 (2007)

    ADS  CAS  PubMed  Google Scholar 

  13. Furutani-Seiki, M. et al. A systematic genome-wide screen for mutations affecting organogenesis in Medaka, Oryzias latipes. Mech. Dev. 121, 647–658 (2004)

    CAS  PubMed  Google Scholar 

  14. Yokoi, H. et al. Mutant analyses reveal different functions of fgfr1 in medaka and zebrafish despite conserved ligand–receptor relationships. Dev. Biol. 304, 326–337 (2007)

    CAS  PubMed  Google Scholar 

  15. Hojo, M. et al. Right-elevated expression of charon is regulated by fluid flow in medaka Kupffer’s vesicle. Dev. Growth Differ. 49, 395–405 (2007)

    ADS  CAS  PubMed  Google Scholar 

  16. Huang, B., Piperno, G. & Luck, D. J. Paralyzed flagella mutants of Chlamydomonas reinhardtii defective for axonemal doublet microtubule arms. J. Biol. Chem. 254, 3091–3099 (1979)

    CAS  PubMed  Google Scholar 

  17. Fowkes, M. E. & Mitchell, D. R. The role of preassembled cytoplasmic complexes in assembly of flagellar dynein subunits. Mol. Biol. Cell 9, 2337–2347 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Essner, J. J. et al. Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132, 1247–1260 (2005)

    CAS  PubMed  Google Scholar 

  19. Kramer-Zucker, A. G. et al. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 132, 1907–1921 (2005)

    CAS  PubMed  Google Scholar 

  20. Gonzales, F. A., Zanchin, N. I., Luz, J. S. & Oliveira, C. C. Characterization of Saccharomyces cerevisiae Nop17p, a novel Nop58p-interacting protein that is involved in Pre-rRNA processing. J. Mol. Biol. 346, 437–455 (2005)

    CAS  PubMed  Google Scholar 

  21. Zhao, R. et al. Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. J. Cell Biol. 180, 563–578 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Boulon, S. et al. The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J. Cell Biol. 180, 579–595 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mochizuki, E. et al. Fish mesonephric model of polycystic kidney disease in medaka (Oryzias latipes) pc mutant. Kidney Int. 68, 23–34 (2005)

    PubMed  Google Scholar 

  24. Fliegauf, M. et al. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am. J. Respir. Crit. Care Med. 171, 1343–1349 (2005)

    PubMed  PubMed Central  Google Scholar 

  25. Kamiya, R. Functional diversity of axonemal dyneins as studied in Chlamydomonas mutants. Int. Rev. Cytol. 219, 115–155 (2002)

    CAS  PubMed  Google Scholar 

  26. LeDizet, M. & Piperno, G. The light chain p28 associates with a subset of inner dynein arm heavy chains in Chlamydomonas axonemes. Mol. Biol. Cell 6, 697–711 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hornef, N. et al. DNAH5 mutations are a common cause of primary ciliary dyskinesia with outer dynein arm defects. Am. J. Respir. Crit. Care Med. 174, 120–126 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tam, L. W. & Lefebvre, P. A. Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics 135, 375–384 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yamamoto, R., Yanagisawa, H. A., Yagi, T. & Kamiya, R. A novel subunit of axonemal dynein conserved among lower and higher eukaryotes. FEBS Lett. 580, 6357–6360 (2006)

    CAS  PubMed  Google Scholar 

  30. Ahmed, N. T. & Mitchell, D. R. ODA16p, a Chlamydomonas flagellar protein needed for dynein assembly. Mol. Biol. Cell 16, 5004–5012 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Merchant, S. S. et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245–250 (2007)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ahmed, T. N. et al. ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery. J. Cell Biol. 183, 313–322 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Young, J. C., Barral, J. M. & Ulrich Hartl, F. More than folding: localized functions of cytosolic chaperones. Trends Biochem. Sci. 28, 541–547 (2003)

    CAS  PubMed  Google Scholar 

  34. Mitchell, B. F. et al. ATP production in Chlamydomonas reinhardtii flagella by glycolytic enzymes. Mol. Biol. Cell 16, 4509–4518 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hirokawa, N. & Takemura, R. Molecular motors and mechanisms of directional transport in neurons. Nature Rev. Neurosci. 6, 201–214 (2005)

    CAS  Google Scholar 

  36. Rosenbaum, J. L. & Witman, G. B. Intraflagellar transport. Nature Rev. Mol. Cell Biol. 3, 813–825 (2002)

    CAS  Google Scholar 

  37. Hagiwara, H., Shibasaki, S. & Ohwada, N. Abnormal cilia in human uterine tube epithelium. J. Clin. Electron Microsc. 23, 493–503 (1990)

    Google Scholar 

  38. Kamiya, R. Mutations at twelve independent loci result in absence of outer dynein arms in Chylamydomonas reinhardtii . J. Cell Biol. 107, 2253–2258 (1988)

    CAS  PubMed  Google Scholar 

  39. Mitchell, D. R. & Sale, W. S. Characterization of a Chlamydomonas insertional mutant that disrupts flagellar central pair microtubule-associated structures. J. Cell Biol. 144, 293–304 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mastronarde, D. N. et al. Arrangement of inner dynein arms in wild-type and mutant flagella of Chlamydomonas . J. Cell Biol. 118, 1145–1162 (1992)

    CAS  PubMed  Google Scholar 

  41. Hou, Y. et al. Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella. J. Cell Biol. 176, 653–665 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mitchell, D. R. & Rosenbaum, J. L. Protein–protein interactions in the 18S ATPase of Chlamydomonas outer dynein arms. Cell Motil. Cytoskeleton 6, 510–520 (1986)

    CAS  PubMed  Google Scholar 

  43. King, S. M., Otter, T. & Witman, G. B. Characterization of monoclonal antibodies against Chlamydomonas flagellar dyneins by high-resolution protein blotting. Proc. Natl Acad. Sci. USA 82, 4717–4721 (1985)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. DiBella, L. M. et al. Differential light chain assembly influences outer arm dynein motor function. Mol. Biol. Cell 16, 5661–5674 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang, P. & Sale, W. S. The Mr 140,000 intermediate chain of Chlamydomonas flagellar inner arm dynein is a WD-repeat protein implicated in dynein arm anchoring. Mol. Biol. Cell 9, 3335–3349 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yagi, T. et al. An axonemal dynein particularly important for flagellar movement at high viscosity. Implications from a new Chlamydomonas mutant deficient in the dynein heavy chain gene DHC9. J. Biol. Chem. 280, 41412–41420 (2005)

    CAS  PubMed  Google Scholar 

  47. Chen, X., Kindle, K. L. & Stern, D. B. The initiation codon determines the efficiency but not the site of translation initiation in Chlamydomonas chloroplasts. Plant Cell 7, 1295–1305 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank C. Lo and D. Morris-Rosendahl for critical reading of this manuscript. We are grateful to M. Sugimoto, A. Ito-Igarashi, K. Nakaguchi, S. Minami, Y. H. Park, Y. Mochizuki, Y. Ozawa, K. Ohki, T. Obata, A. Heer and C. Reinhardt for excellent fish care and/or experimental assistance. We also thank A. Shimada and D. Nihei for their help in medaka experiments, J. Freshour and M. Nakatsugawa for help with Chlamydomonas, and S. King, H. Qin, W. Sale and D. Stern for antibodies. Our mutant screening was carried out mainly at the National Institute of Genetics (NIG), supported by NIG Cooperative Research Program (2002–2006). This work was supported in part by Grants-in-Aid for Scientific Research Priority Area Genome Science and Scientific Research (A and B), Global COE Program (Integrative Life Science Based on the Study of Biosignaling Mechanisms) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, Yamada Science Foundation, and a Bio-Design Project of the Ministry of Agriculture, Forestry and Fisheries of Japan. D.K. was a research fellow supported by the 21th century COE program of the University of Tokyo, MEXT, Japan. This work was supported by grants to H.Omran from the ‘Deutsche Forschungsgemeinschaft’ DFG Om 6/4, GRK1104, BIOSS and the SFB592, and to D.R.M. from the NIH, GM44228. We would like to acknowledge the sequencing activities by K. Borzym and the Seq-Team at MPI-MG, which was supported by the German Ministry of Science and Education (BMBF) by grant NGFN-2:01GR0414-PDN-S02T17 to R.R. We are grateful for the support by the ‘Primare Ciliaere Dyskinesie and Kartagener Syndrom e.V.’.

Author Contributions Research planning and supervision was by H.Omran, D.R.M. and H.T.; medaka genetics and phenotypic analyses by D.K., T.T. and H.T.; biochemical experiments using mouse testis was by T.T., S.K. and Y.W.; high-speed video microscopy of medaka Kupffer’s vesicle cilia was by C.H., H.M., H.K., D.K. and A.M.; electron microscopy of medaka cilia/flagella was by H.H. and R.K.; experiments on human PCD were by H. Omran, H. Olbrich, N.T.L., M.F., H.Z., H.S. and R.R.; Chlamydomonas experiments were by D.R.M., Q.Z., G.L., E.O., T.Y. and R.K.; and manuscript writing was by H.Omran, D.R.M. and H.T.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Heymut Omran, David R. Mitchell or Hiroyuki Takeda.

Supplementary information

Supplementary Information

This file contains Supplementary Tables S1-S5, Supplementary Figures S1-S7 with legends, and legends for Supplementary movies S1-S10. (PDF 6645 kb)

Supplementary Movie 1

Movie S1. Dorsal view of cilia in wild-type Kupffer's vesicle. The wild-type motile cilia rotate on the KV epithelial cells. (MOV 1845 kb)

Supplementary Movie 2

Movie S2. Dorsal view of cilia in ktu mutant Kupffer's vesicle. The cilia rotation is completely blocked. (MOV 1539 kb)

Supplementary Movie 3

Movie S3. Flagellar waveform of wild-type sperm. The wild-type flagellar bending beautifully propagate to the tip of the sperm tail. (MOV 1718 kb)

Supplementary Movie 4

Movie S4. Flagellar waveform of ktu mutant sperm. The mutant sperm looks paralyzed and the waveform of flagellar beating is affected. The flagellar bending does not propagate to the tip of the sperm tail. (MOV 2096 kb)

Supplementary Movie 5

Movie S5. Motility of cilia in respiratory cells from control patients. (AVI 420 kb)

Supplementary Movie 6

Movie S6. Motility of cilia in respiratory cells from PCD patient OP146II1. (AVI 244 kb)

Supplementary Movie 7

Movie S7. Motility of cilia in respiratory cells from PCD patient OP146II3. (AVI 311 kb)

Supplementary Movie 8

Movie S8. Motility of cilia in respiratory cells from PCD patient OP234II1. (AVI 417 kb)

Supplementary Movie 9

Movie S9. Motility of sperm flagella from control patients. (AVI 951 kb)

Supplementary Movie 10

Movie S10. Motility of sperm flagella from PCD patient OP146II3. (AVI 542 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Omran, H., Kobayashi, D., Olbrich, H. et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 456, 611–616 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing