Subjects

Abstract

Cilia and flagella are highly conserved organelles that have diverse roles in cell motility and sensing extracellular signals. Motility defects in cilia and flagella often result in primary ciliary dyskinesia. However, the mechanisms underlying cilia formation and function, and in particular the cytoplasmic assembly of dyneins that power ciliary motility, are only poorly understood. Here we report a new gene, kintoun (ktu), involved in this cytoplasmic process. This gene was first identified in a medaka mutant, and found to be mutated in primary ciliary dyskinesia patients from two affected families as well as in the pf13 mutant of Chlamydomonas. In the absence of Ktu/PF13, both outer and inner dynein arms are missing or defective in the axoneme, leading to a loss of motility. Biochemical and immunohistochemical studies show that Ktu/PF13 is one of the long-sought proteins involved in pre-assembly of dynein arm complexes in the cytoplasm before intraflagellar transport loads them for the ciliary compartment.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

Primary accessions

Data deposits

The accession numbers are: medaka ktu, AB455535; human KTU, FJ158843; mouse ktu, AB455811; Chlamydomonas PF13 cDNA, AB455237; and Chlamydomonas PF13 genome, FJ160770.

References

  1. 1.

    et al. Mechanism of nodal flow: A conserved symmetry breaking event in left-right axis determination. Cell 121, 633–644 (2005)

  2. 2.

    , & When cilia go bad: cilia defects and ciliopathies. Nature Rev. Mol. Cell Biol. 8, 880–893 (2007)

  3. 3.

    Polycystic kidney disease. N. Engl. J. Med. 350, 151–164 (2004)

  4. 4.

    , & Genetic defects in ciliary structure and function. Annu. Rev. Physiol. 69, 423–450 (2007)

  5. 5.

    et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nature Genet. 30, 143–144 (2002)

  6. 6.

    et al. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am. J. Hum. Genet. 65, 1508–1519 (1999)

  7. 7.

    et al. Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc. Natl Acad. Sci. USA 99, 10282–10286 (2002)

  8. 8.

    et al. A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facial-digital type I syndrome. Hum. Genet. 120, 171–178 (2006)

  9. 9.

    , , & A family with RP3 type of X-linked retinitis pigmentosa: an association with ciliary abnormalities. Hum. Genet. 88, 331–334 (1992)

  10. 10.

    et al. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia. Proc. Natl Acad. Sci. USA 104, 3336–3341 (2007)

  11. 11.

    , & Medaka–a model organism from the far East. Nature Rev. Genet. 3, 53–64 (2002)

  12. 12.

    et al. The medaka draft genome and insights into vertebrate genome evolution. Nature 447, 714–719 (2007)

  13. 13.

    et al. A systematic genome-wide screen for mutations affecting organogenesis in Medaka, Oryzias latipes. Mech. Dev. 121, 647–658 (2004)

  14. 14.

    et al. Mutant analyses reveal different functions of fgfr1 in medaka and zebrafish despite conserved ligand–receptor relationships. Dev. Biol. 304, 326–337 (2007)

  15. 15.

    et al. Right-elevated expression of charon is regulated by fluid flow in medaka Kupffer’s vesicle. Dev. Growth Differ. 49, 395–405 (2007)

  16. 16.

    , & Paralyzed flagella mutants of Chlamydomonas reinhardtii defective for axonemal doublet microtubule arms. J. Biol. Chem. 254, 3091–3099 (1979)

  17. 17.

    & The role of preassembled cytoplasmic complexes in assembly of flagellar dynein subunits. Mol. Biol. Cell 9, 2337–2347 (1998)

  18. 18.

    et al. Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132, 1247–1260 (2005)

  19. 19.

    et al. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 132, 1907–1921 (2005)

  20. 20.

    , , & Characterization of Saccharomyces cerevisiae Nop17p, a novel Nop58p-interacting protein that is involved in Pre-rRNA processing. J. Mol. Biol. 346, 437–455 (2005)

  21. 21.

    et al. Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. J. Cell Biol. 180, 563–578 (2008)

  22. 22.

    et al. The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J. Cell Biol. 180, 579–595 (2008)

  23. 23.

    et al. Fish mesonephric model of polycystic kidney disease in medaka (Oryzias latipes) pc mutant. Kidney Int. 68, 23–34 (2005)

  24. 24.

    et al. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am. J. Respir. Crit. Care Med. 171, 1343–1349 (2005)

  25. 25.

    Functional diversity of axonemal dyneins as studied in Chlamydomonas mutants. Int. Rev. Cytol. 219, 115–155 (2002)

  26. 26.

    & The light chain p28 associates with a subset of inner dynein arm heavy chains in Chlamydomonas axonemes. Mol. Biol. Cell 6, 697–711 (1995)

  27. 27.

    et al. DNAH5 mutations are a common cause of primary ciliary dyskinesia with outer dynein arm defects. Am. J. Respir. Crit. Care Med. 174, 120–126 (2006)

  28. 28.

    & Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics 135, 375–384 (1993)

  29. 29.

    , , & A novel subunit of axonemal dynein conserved among lower and higher eukaryotes. FEBS Lett. 580, 6357–6360 (2006)

  30. 30.

    & ODA16p, a Chlamydomonas flagellar protein needed for dynein assembly. Mol. Biol. Cell 16, 5004–5012 (2005)

  31. 31.

    et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245–250 (2007)

  32. 32.

    et al. ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery. J. Cell Biol. 183, 313–322 (2008)

  33. 33.

    , & More than folding: localized functions of cytosolic chaperones. Trends Biochem. Sci. 28, 541–547 (2003)

  34. 34.

    et al. ATP production in Chlamydomonas reinhardtii flagella by glycolytic enzymes. Mol. Biol. Cell 16, 4509–4518 (2005)

  35. 35.

    & Molecular motors and mechanisms of directional transport in neurons. Nature Rev. Neurosci. 6, 201–214 (2005)

  36. 36.

    & Intraflagellar transport. Nature Rev. Mol. Cell Biol. 3, 813–825 (2002)

  37. 37.

    , & Abnormal cilia in human uterine tube epithelium. J. Clin. Electron Microsc. 23, 493–503 (1990)

  38. 38.

    Mutations at twelve independent loci result in absence of outer dynein arms in Chylamydomonas reinhardtii. J. Cell Biol. 107, 2253–2258 (1988)

  39. 39.

    & Characterization of a Chlamydomonas insertional mutant that disrupts flagellar central pair microtubule-associated structures. J. Cell Biol. 144, 293–304 (1999)

  40. 40.

    et al. Arrangement of inner dynein arms in wild-type and mutant flagella of Chlamydomonas. J. Cell Biol. 118, 1145–1162 (1992)

  41. 41.

    et al. Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella. J. Cell Biol. 176, 653–665 (2007)

  42. 42.

    & Protein–protein interactions in the 18S ATPase of Chlamydomonas outer dynein arms. Cell Motil. Cytoskeleton 6, 510–520 (1986)

  43. 43.

    , & Characterization of monoclonal antibodies against Chlamydomonas flagellar dyneins by high-resolution protein blotting. Proc. Natl Acad. Sci. USA 82, 4717–4721 (1985)

  44. 44.

    et al. Differential light chain assembly influences outer arm dynein motor function. Mol. Biol. Cell 16, 5661–5674 (2005)

  45. 45.

    & The Mr 140,000 intermediate chain of Chlamydomonas flagellar inner arm dynein is a WD-repeat protein implicated in dynein arm anchoring. Mol. Biol. Cell 9, 3335–3349 (1998)

  46. 46.

    et al. An axonemal dynein particularly important for flagellar movement at high viscosity. Implications from a new Chlamydomonas mutant deficient in the dynein heavy chain gene DHC9. J. Biol. Chem. 280, 41412–41420 (2005)

  47. 47.

    , & The initiation codon determines the efficiency but not the site of translation initiation in Chlamydomonas chloroplasts. Plant Cell 7, 1295–1305 (1995)

Download references

Acknowledgements

We thank C. Lo and D. Morris-Rosendahl for critical reading of this manuscript. We are grateful to M. Sugimoto, A. Ito-Igarashi, K. Nakaguchi, S. Minami, Y. H. Park, Y. Mochizuki, Y. Ozawa, K. Ohki, T. Obata, A. Heer and C. Reinhardt for excellent fish care and/or experimental assistance. We also thank A. Shimada and D. Nihei for their help in medaka experiments, J. Freshour and M. Nakatsugawa for help with Chlamydomonas, and S. King, H. Qin, W. Sale and D. Stern for antibodies. Our mutant screening was carried out mainly at the National Institute of Genetics (NIG), supported by NIG Cooperative Research Program (2002–2006). This work was supported in part by Grants-in-Aid for Scientific Research Priority Area Genome Science and Scientific Research (A and B), Global COE Program (Integrative Life Science Based on the Study of Biosignaling Mechanisms) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, Yamada Science Foundation, and a Bio-Design Project of the Ministry of Agriculture, Forestry and Fisheries of Japan. D.K. was a research fellow supported by the 21th century COE program of the University of Tokyo, MEXT, Japan. This work was supported by grants to H.Omran from the ‘Deutsche Forschungsgemeinschaft’ DFG Om 6/4, GRK1104, BIOSS and the SFB592, and to D.R.M. from the NIH, GM44228. We would like to acknowledge the sequencing activities by K. Borzym and the Seq-Team at MPI-MG, which was supported by the German Ministry of Science and Education (BMBF) by grant NGFN-2:01GR0414-PDN-S02T17 to R.R. We are grateful for the support by the ‘Primare Ciliaere Dyskinesie and Kartagener Syndrom e.V.’.

Author Contributions Research planning and supervision was by H.Omran, D.R.M. and H.T.; medaka genetics and phenotypic analyses by D.K., T.T. and H.T.; biochemical experiments using mouse testis was by T.T., S.K. and Y.W.; high-speed video microscopy of medaka Kupffer’s vesicle cilia was by C.H., H.M., H.K., D.K. and A.M.; electron microscopy of medaka cilia/flagella was by H.H. and R.K.; experiments on human PCD were by H. Omran, H. Olbrich, N.T.L., M.F., H.Z., H.S. and R.R.; Chlamydomonas experiments were by D.R.M., Q.Z., G.L., E.O., T.Y. and R.K.; and manuscript writing was by H.Omran, D.R.M. and H.T.

Author information

Author notes

    • Heymut Omran
    • , Daisuke Kobayashi
    • , Heike Olbrich
    •  & Tatsuya Tsukahara

    These authors contributed equally to this work.

    • Daisuke Kobayashi
    • , Qi Zhang
    •  & Toshiki Yagi

    Present addresses: Department of Anatomy and Developmental Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan (D.K.); Structural Biology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan (T.Y.); Department of Neurobiology, Schering Plough Research Institute, Kenilworth, New Jersey 07033, USA (Q.Z.).

Affiliations

  1. Department of Pediatrics and Adolescent Medicine, University Hospital Freiburg Mathildenstraße 1, D-79106 Freiburg, Germany

    • Heymut Omran
    • , Heike Olbrich
    • , Niki T. Loges
    •  & Manfred Fliegauf
  2. Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan

    • Daisuke Kobayashi
    • , Toshiki Yagi
    • , Sumito Koshida
    • , Ritsu Kamiya
    •  & Hiroyuki Takeda
  3. Institute of Molecular and Cellular Biosciences, and Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0032, Japan

    • Tatsuya Tsukahara
    •  & Yoshinori Watanabe
  4. Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan

    • Haruo Hagiwara
  5. Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210-1605, USA

    • Qi Zhang
    • , Gerard Leblond
    •  & David R. Mitchell
  6. Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA

    • Eileen O’Toole
  7. Laboratory for Cell Function Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan

    • Chikako Hara
    • , Hideaki Mizuno
    • , Hiroyuki Kawano
    •  & Atsushi Miyawaki
  8. Department of Tumor Virology, German Cancer Research Center, D-69120 Heidelberg, Germany

    • Hanswalter Zentgraf
  9. Klinik für Kinder und Jugendliche, Klinikum Nürnberg Süd, Breslauer Straße 201, 90471 Nürnberg, Germany

    • Horst Seithe
  10. Max-Planck-Institut für molekulare Genetik, D-14195 Berlin, Germany

    • Richard Reinhardt

Authors

  1. Search for Heymut Omran in:

  2. Search for Daisuke Kobayashi in:

  3. Search for Heike Olbrich in:

  4. Search for Tatsuya Tsukahara in:

  5. Search for Niki T. Loges in:

  6. Search for Haruo Hagiwara in:

  7. Search for Qi Zhang in:

  8. Search for Gerard Leblond in:

  9. Search for Eileen O’Toole in:

  10. Search for Chikako Hara in:

  11. Search for Hideaki Mizuno in:

  12. Search for Hiroyuki Kawano in:

  13. Search for Manfred Fliegauf in:

  14. Search for Toshiki Yagi in:

  15. Search for Sumito Koshida in:

  16. Search for Atsushi Miyawaki in:

  17. Search for Hanswalter Zentgraf in:

  18. Search for Horst Seithe in:

  19. Search for Richard Reinhardt in:

  20. Search for Yoshinori Watanabe in:

  21. Search for Ritsu Kamiya in:

  22. Search for David R. Mitchell in:

  23. Search for Hiroyuki Takeda in:

Corresponding authors

Correspondence to Heymut Omran or David R. Mitchell or Hiroyuki Takeda.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Tables S1-S5, Supplementary Figures S1-S7 with legends, and legends for Supplementary movies S1-S10.

Videos

  1. 1.

    Supplementary Movie 1

    Movie S1. Dorsal view of cilia in wild-type Kupffer's vesicle. The wild-type motile cilia rotate on the KV epithelial cells.

  2. 2.

    Supplementary Movie 2

    Movie S2. Dorsal view of cilia in ktu mutant Kupffer's vesicle. The cilia rotation is completely blocked.

  3. 3.

    Supplementary Movie 3

    Movie S3. Flagellar waveform of wild-type sperm. The wild-type flagellar bending beautifully propagate to the tip of the sperm tail.

  4. 4.

    Supplementary Movie 4

    Movie S4. Flagellar waveform of ktu mutant sperm. The mutant sperm looks paralyzed and the waveform of flagellar beating is affected. The flagellar bending does not propagate to the tip of the sperm tail.

  5. 5.

    Supplementary Movie 5

    Movie S5. Motility of cilia in respiratory cells from control patients.

  6. 6.

    Supplementary Movie 6

    Movie S6. Motility of cilia in respiratory cells from PCD patient OP146II1.

  7. 7.

    Supplementary Movie 7

    Movie S7. Motility of cilia in respiratory cells from PCD patient OP146II3.

  8. 8.

    Supplementary Movie 8

    Movie S8. Motility of cilia in respiratory cells from PCD patient OP234II1.

  9. 9.

    Supplementary Movie 9

    Movie S9. Motility of sperm flagella from control patients.

  10. 10.

    Supplementary Movie 10

    Movie S10. Motility of sperm flagella from PCD patient OP146II3.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature07471

Further reading

  • The RPAP3-Cterminal domain identifies R2TP-like quaternary chaperones

    • Chloé Maurizy
    • , Marc Quinternet
    • , Yoann Abel
    • , Céline Verheggen
    • , Paulo E. Santo
    • , Maxime Bourguet
    • , Ana C.F. Paiva
    • , Benoît Bragantini
    • , Marie-Eve Chagot
    • , Marie-Cécile Robert
    • , Claire Abeza
    • , Philippe Fabre
    • , Philippe Fort
    • , Franck Vandermoere
    • , Pedro M.F. Sousa
    • , Jean-Christophe Rain
    • , Bruno Charpentier
    • , Sarah Cianférani
    • , Tiago M. Bandeiras
    • , Bérengère Pradet-Balade
    • , Xavier Manival
    •  & Edouard Bertrand

    Nature Communications (2018)

  • Targeted deletion of the AAA-ATPase Ruvbl1 in mice disrupts ciliary integrity and causes renal disease and hydrocephalus

    • Claudia Dafinger
    • , Markus M. Rinschen
    • , Lori Borgal
    • , Carolin Ehrenberg
    • , Sander G. Basten
    • , Mareike Franke
    • , Martin Höhne
    • , Manfred Rauh
    • , Heike Göbel
    • , Wilhelm Bloch
    • , F. Thomas Wunderlich
    • , Dorien J. M. Peters
    • , Dirk Tasche
    • , Tripti Mishra
    • , Sandra Habbig
    • , Jörg Dötsch
    • , Roman-Ulrich Müller
    • , Jens C. Brüning
    • , Thorsten Persigehl
    • , Rachel H. Giles
    • , Thomas Benzing
    • , Bernhard Schermer
    •  & Max C. Liebau

    Experimental & Molecular Medicine (2018)

  • X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3

    • Chiara Olcese
    • , Mitali P. Patel
    • , Amelia Shoemark
    • , Santeri Kiviluoto
    • , Marie Legendre
    • , Hywel J. Williams
    • , Cara K. Vaughan
    • , Jane Hayward
    • , Alice Goldenberg
    • , Richard D. Emes
    • , Mustafa M. Munye
    • , Laura Dyer
    • , Thomas Cahill
    • , Jeremy Bevillard
    • , Corinne Gehrig
    • , Michel Guipponi
    • , Sandra Chantot
    • , Philippe Duquesnoy
    • , Lucie Thomas
    • , Ludovic Jeanson
    • , Bruno Copin
    • , Aline Tamalet
    • , Christel Thauvin-Robinet
    • , Jean- François Papon
    • , Antoine Garin
    • , Isabelle Pin
    • , Gabriella Vera
    • , Paul Aurora
    • , Mahmoud R. Fassad
    • , Lucy Jenkins
    • , Christopher Boustred
    • , Thomas Cullup
    • , Mellisa Dixon
    • , Alexandros Onoufriadis
    • , Andrew Bush
    • , Eddie M. K. Chung
    • , Stylianos E. Antonarakis
    • , Michael R. Loebinger
    • , Robert Wilson
    • , Miguel Armengot
    • , Estelle Escudier
    • , Claire Hogg
    • , Serge Amselem
    • , Zhaoxia Sun
    • , Lucia Bartoloni
    • , Jean-Louis Blouin
    •  & Hannah M. Mitchison

    Nature Communications (2017)

  • Genes and molecular pathways underpinning ciliopathies

    • Jeremy F. Reiter
    •  & Michel R. Leroux

    Nature Reviews Molecular Cell Biology (2017)

  • The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery

    • Michinori Toriyama
    • , Chanjae Lee
    • , S Paige Taylor
    • , Ivan Duran
    • , Daniel H Cohn
    • , Ange-Line Bruel
    • , Jacqueline M Tabler
    • , Kevin Drew
    • , Marcus R Kelly
    • , Sukyoung Kim
    • , Tae Joo Park
    • , Daniela A Braun
    • , Ghislaine Pierquin
    • , Armand Biver
    • , Kerstin Wagner
    • , Anne Malfroot
    • , Inusha Panigrahi
    • , Brunella Franco
    • , Hadeel Adel Al-lami
    • , Yvonne Yeung
    • , Yeon Ja Choi
    • , Yannis Duffourd
    • , Laurence Faivre
    • , Jean-Baptiste Rivière
    • , Jiang Chen
    • , Karen J Liu
    • , Edward M Marcotte
    • , Friedhelm Hildebrandt
    • , Christel Thauvin-Robinet
    • , Deborah Krakow
    • , Peter K Jackson
    •  & John B Wallingford

    Nature Genetics (2016)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.