The molecular neurobiology of depression


Unravelling the pathophysiology of depression is a unique challenge. Not only are depressive syndromes heterogeneous and their aetiologies diverse, but symptoms such as guilt and suicidality are impossible to reproduce in animal models. Nevertheless, other symptoms have been accurately modelled, and these, together with clinical data, are providing insight into the neurobiology of depression. Recent studies combining behavioural, molecular and electrophysiological techniques reveal that certain aspects of depression result from maladaptive stress-induced neuroplastic changes in specific neural circuits. They also show that understanding the mechanisms of resilience to stress offers a crucial new dimension for the development of fundamentally novel antidepressant treatments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Neural circuitry of depression.
Figure 2: BDNF and depression — an example of the complexities of the molecular pathophysiology of depression.
Figure 3: Epigenetic regulation in depression.


  1. 1

    Kessler, R. C. et al. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 593–602 (2005).

    PubMed  Google Scholar 

  2. 2

    Nestler, E. J. et al. Neurobiology of depression. Neuron 34, 13–25 (2002).

    CAS  PubMed  Google Scholar 

  3. 3

    Knol, M. J. et al. Depression as a risk factor for the onset of type 2 diabetes mellitus. A meta-analysis. Diabetologia 49, 837–845 (2006).

    CAS  PubMed  Google Scholar 

  4. 4

    Evans, D. L. et al. Mood disorders in the medically ill: scientific review and recommendations. Biol. Psychiatry 58, 175–189 (2005).

    PubMed  Google Scholar 

  5. 5

    Gildengers, A. G. et al. Medical burden in late-life bipolar and major depressive disorders. Am. J. Geriatr. Psychiatry 16, 194–200 (2008).

    PubMed  PubMed Central  Google Scholar 

  6. 6

    Phelps, E. A. & LeDoux, J. E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48, 175–187 (2005).

    CAS  Google Scholar 

  7. 7

    Drevets, W. C. Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr. Opin. Neurobiol. 11, 240–249 (2001).

    CAS  PubMed  Google Scholar 

  8. 8

    Lopez-Leon, S. et al. Meta-analyses of genetic studies on major depressive disorder. Mol. Psychiatry 13, 772–785 (2007).

    PubMed  Google Scholar 

  9. 9

    Rush, A. J. The varied clinical presentations of major depressive disorder. J. Clin. Psychiatry 68 (Suppl. 8), 4–10 (2007).

    PubMed  Google Scholar 

  10. 10

    Kendler, K. S., Karkowski, L. M. & Prescott, C. A. Causal relationship between stressful life events and the onset of major depression. Am. J. Psychiatry 156, 837–841 (1999).

    CAS  PubMed  Google Scholar 

  11. 11

    Mill, J. & Petronis, A. Molecular studies of major depressive disorder: the epigenetic perspective. Mol. Psychiatry 12, 799–814 (2007).

    CAS  PubMed  Google Scholar 

  12. 12

    Hasler, G., Drevets, W. C., Manji, H. K. & Charney, D. S. Discovering endophenotypes for major depression. Neuropsychopharmacology 29, 1765–1781 (2004).

    CAS  PubMed  Google Scholar 

  13. 13

    Ressler, K. J. & Mayberg, H. S. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nature Neurosci. 10, 1116–1124 (2007).

    CAS  Google Scholar 

  14. 14

    Berton, O. & Nestler, E. J. New approaches to antidepressant drug discovery: beyond monoamines. Nature Rev. Neurosci. 7, 137–151 (2006).

    CAS  Google Scholar 

  15. 15

    Sheline, Y. I. Neuroimaging studies of mood disorder effects on the brain. Biol. Psychiatry 54, 338–352 (2003).

    PubMed  Google Scholar 

  16. 16

    Harrison, P. J. The neuropathology of primary mood disorder. Brain 125, 1428–1449 (2002).

    PubMed  Google Scholar 

  17. 17

    Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005). This paper gives the first demonstration of the therapeutic efficacy of deep brain stimulation applied to the subgenual cingulate gyrus for treatment-refractory depression.

    CAS  Google Scholar 

  18. 18

    Schlaepfer, T. E. et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 33, 368–377 (2008).

    PubMed  Google Scholar 

  19. 19

    Nestler, E. J. & Carlezon, W. A. Jr . The mesolimbic dopamine reward circuit in depression. Biol. Psychiatry 59, 1151–1159 (2006).

    CAS  Google Scholar 

  20. 20

    Pittenger, C. & Duman, R. S. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33, 88–109 (2008).

    CAS  PubMed  Google Scholar 

  21. 21

    Trivedi, M. H. et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am. J. Psychiatry 163, 28–40 (2006).

    PubMed  Google Scholar 

  22. 22

    Ansorge, M. S., Hen, R. & Gingrich, J. A. Neurodevelopmental origins of depressive disorders. Curr. Opin. Pharmacol. 7, 8–17 (2007).

    CAS  PubMed  Google Scholar 

  23. 23

    Ruhe, H. G., Mason, N. S. & Schene, A. H. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol. Psychiatry 12, 331–359 (2007).

    CAS  PubMed  Google Scholar 

  24. 24

    Hu, H. et al. Emotion enhances learning via norepinephrine regulation of AMPA-receptor trafficking. Cell 131, 160–173 (2007).

    CAS  PubMed  Google Scholar 

  25. 25

    Krishnan, V. et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131, 391–404 (2007).This paper adapts the social-defeat model to study resilient behaviour and identifies active neurobiological mechanisms that maintain normal functioning in the face of chronic stress.

    CAS  Article  Google Scholar 

  26. 26

    Svenningsson, P. et al. Alterations in 5-HT1B receptor function by p11 in depression-like states. Science 311, 77–80 (2006).

    ADS  CAS  Google Scholar 

  27. 27

    Mathew, S. J., Manji, H. K. & Charney, D. S. Novel drugs and therapeutic targets for severe mood disorders. Neuropsychopharmacology 33, 2080–2092 (2008). This paper provides an up-to-date and comprehensive list of new antidepressant drugs currently in various stages of clinical trials.

    CAS  PubMed  Google Scholar 

  28. 28

    Lucas, G. et al. Serotonin4 (5-HT4) receptor agonists are putative antidepressants with a rapid onset of action. Neuron 55, 712–725 (2007).

    CAS  Google Scholar 

  29. 29

    Uhr, M. et al. Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron 57, 203–209 (2008).

    CAS  PubMed  Google Scholar 

  30. 30

    Holsboer, F. How can we realize the promise of personalized antidepressant medicines? Nature Rev. Neurosci. 9, 638–646 (2008).

    CAS  Google Scholar 

  31. 31

    Duman, R. S. & Monteggia, L. M. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 59, 1116–1127 (2006).

    CAS  PubMed  Google Scholar 

  32. 32

    Monteggia, L. M. et al. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc. Natl Acad. Sci. USA 101, 10827–10832 (2004).

    ADS  CAS  Google Scholar 

  33. 33

    Karege, F., Vaudan, G., Schwald, M., Perroud, N. & La Harpe, R. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res. Mol. Brain Res. 136, 29–37 (2005).

    CAS  PubMed  Google Scholar 

  34. 34

    Shirayama, Y., Chen, A. C., Nakagawa, S., Russell, D. S. & Duman, R. S. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 22, 3251–3261 (2002).

    CAS  Google Scholar 

  35. 35

    Monteggia, L. M. et al. Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biol. Psychiatry 61, 187–197 (2007).

    CAS  PubMed  Google Scholar 

  36. 36

    Groves, J. O. Is it time to reassess the BDNF hypothesis of depression? Mol. Psychiatry 12, 1079–1088 (2007).

    CAS  PubMed  Google Scholar 

  37. 37

    Martinowich, K., Manji, H. & Lu, B. New insights into BDNF function in depression and anxiety. Nature Neurosci. 10, 1089–1093 (2007).

    CAS  PubMed  Google Scholar 

  38. 38

    Zorner, B. et al. Forebrain-specific trkB-receptor knockout mice: behaviorally more hyperactive than 'depressive'. Biol. Psychiatry 54, 972–982 (2003).

    CAS  PubMed  Google Scholar 

  39. 39

    Berton, O. et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311, 864–868 (2006). By using the social-defeat model, this paper characterizes the potent, pro-depressant effects of BDNF in the mesolimbic dopamine pathway, which is opposite to the well-described antidepressant-like effects of BDNF in hippocampal circuits.

    ADS  CAS  Google Scholar 

  40. 40

    Eisch, A. J. et al. Brain–derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biol. Psychiatry 54, 994–1005 (2003).

    CAS  PubMed  Google Scholar 

  41. 41

    Chen, Z. Y. et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 314, 140–143 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Egan, M. F. et al. The BDNF Val66Met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269 (2003). This multidisciplinary study demonstrates how the polymorphism in BDNF in which methionine is substituted for valine at position 66 causes deficits in episodic memory, alters hippocampal activation and decreases activity-dependent BDNF secretion.

    CAS  PubMed  Google Scholar 

  43. 43

    Szeszko, P. R. et al. Brain-derived neurotrophic factor Val66Met polymorphism and volume of the hippocampal formation. Mol. Psychiatry 10, 631–636 (2005).

    CAS  PubMed  Google Scholar 

  44. 44

    Gratacos, M. et al. Brain-derived neurotrophic factor Val66Met and psychiatric disorders: meta-analysis of case-control studies confirm association to substance-related disorders, eating disorders, and schizophrenia. Biol. Psychiatry 61, 911–922 (2007).

    CAS  PubMed  Google Scholar 

  45. 45

    Kaufman, J. et al. Brain-derived neurotrophic factor-5–HTTLPR gene interactions and environmental modifiers of depression in children. Biol. Psychiatry 59, 673–680 (2006).

    CAS  PubMed  Google Scholar 

  46. 46

    Kim, J. M. et al. Interactions between life stressors and susceptibility genes (5-HTTLPR and BDNF) on depression in Korean elders. Biol. Psychiatry 62, 423–428 (2007).

    CAS  PubMed  Google Scholar 

  47. 47

    Pezawas, L. et al. Evidence of biologic epistasis between BDNF and SLC6A4 and implications for depression. Mol. Psychiatry 13, 709–716 (2008).

    CAS  PubMed  Google Scholar 

  48. 48

    Sahay, A. & Hen, R. Adult hippocampal neurogenesis in depression. Nature Neurosci. 10, 1110–1115 (2007).

    CAS  PubMed  Google Scholar 

  49. 49

    Sairanen, M., Lucas, G., Ernfors, P., Castren, M. & Castren, E. Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J. Neurosci. 25, 1089–1094 (2005).

    CAS  PubMed  Google Scholar 

  50. 50

    Hunsberger, J. G. et al. Antidepressant actions of the exercise-regulated gene VGF. Nature Med. 13, 1476–1482 (2007). This paper characterizes the antidepressant effects of VGF, an exercise-regulated neurotrophic factor in the hippocampus, and identifies VGF-mediated signalling as a potential therapeutic target.

    CAS  PubMed  Google Scholar 

  51. 51

    Thakker-Varia, S. et al. The neuropeptide VGF produces antidepressant-like behavioral effects and enhances proliferation in the hippocampus. J. Neurosci. 27, 12156–12167 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Warner-Schmidt, J. L. & Duman, R. S. VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. Proc. Natl Acad. Sci. USA 104, 4647–4652 (2007).

    ADS  CAS  PubMed  Google Scholar 

  53. 53

    Airan, R. D. et al. High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science 317, 819–823 (2007). This study uses quantitative voltage-sensitive dye imaging to explore the contribution of antidepressant-induced neurogenesis to local hippocampal network dynamics.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Kempermann, G. The neurogenic reserve hypothesis: what is adult hippocampal neurogenesis good for? Trends Neurosci. 31, 163–169 (2008).

    CAS  PubMed  Google Scholar 

  55. 55

    Surget, A. et al. Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol. Psychiatry 64, 293–301 (2008).

    CAS  PubMed  Google Scholar 

  56. 56

    Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809 (2003).

    ADS  CAS  PubMed  Google Scholar 

  57. 57

    Zhao, C., Deng, W. & Gage, F. H. Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Parker, K. J., Schatzberg, A. F. & Lyons, D. M. Neuroendocrine aspects of hypercortisolism in major depression. Horm. Behav. 43, 60–66 (2003).

    CAS  PubMed  Google Scholar 

  59. 59

    Raison, C. L. & Miller, A. H. When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am. J. Psychiatry 160, 1554–1565 (2003).

    PubMed  Google Scholar 

  60. 60

    Gourley, S. L. et al. Regionally specific regulation of ERK MAP kinase in a model of antidepressant-sensitive chronic depression. Biol. Psychiatry 63, 353–359 (2007).

    PubMed  PubMed Central  Google Scholar 

  61. 61

    McEwen, B. S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87, 873–904 (2007).

    PubMed  Google Scholar 

  62. 62

    Brown, E. S., Varghese, F. P. & McEwen, B. S. Association of depression with medical illness: does cortisol play a role? Biol. Psychiatry 55, 1–9 (2004).

    CAS  PubMed  Google Scholar 

  63. 63

    Nemeroff, C. B. & Owens, M. J. Treatment of mood disorders. Nature Neurosci. 5 (Suppl.), 1068–1070 (2002).

    CAS  PubMed  Google Scholar 

  64. 64

    de Kloet, E. R., Joels, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nature Rev. Neurosci. 6, 463–475 (2005).

    CAS  Google Scholar 

  65. 65

    Brouwer, J. P. et al. Thyroid and adrenal axis in major depression: a controlled study in outpatients. Eur. J. Endocrinol. 152, 185–191 (2005).

    CAS  PubMed  Google Scholar 

  66. 66

    Schatzberg, A. F. & Lindley, S. Glucocorticoid antagonists in neuropsychotic disorders. Eur. J. Pharmacol. 583, 358–364 (2008).

    CAS  PubMed  Google Scholar 

  67. 67

    Gold, P. W. & Chrousos, G. P. Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol. Psychiatry 7, 254–275 (2002).

    CAS  PubMed  Google Scholar 

  68. 68

    Heim, C., Ehlert, U. & Hellhammer, D. H. The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology 25, 1–35 (2000).

    CAS  PubMed  Google Scholar 

  69. 69

    Dantzer, R., O'Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Rev. Neurosci. 9, 46–56 (2008).

    CAS  Google Scholar 

  70. 70

    Dunn, A. J., Swiergiel, A. H. & de Beaurepaire, R. Cytokines as mediators of depression: what can we learn from animal studies? Neurosci. Biobehav. Rev. 29, 891–909 (2005).

    CAS  PubMed  Google Scholar 

  71. 71

    Loftis, J. M. & Hauser, P. The phenomenology and treatment of interferon-induced depression. J. Affect. Disord. 82, 175–190 (2004).

    CAS  PubMed  Google Scholar 

  72. 72

    Chourbaji, S. et al. IL-6 knockout mice exhibit resistance to stress-induced development of depression-like behaviors. Neurobiol. Dis. 23, 587–594 (2006).

    CAS  PubMed  Google Scholar 

  73. 73

    Simen, B. B., Duman, C. H., Simen, A. A. & Duman, R. S. TNFα signaling in depression and anxiety: behavioral consequences of individual receptor targeting. Biol. Psychiatry 59, 775–785 (2006).

    CAS  PubMed  Google Scholar 

  74. 74

    Koo, J. W. & Duman, R. S. IL-1β is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc. Natl Acad. Sci. USA 105, 751–756 (2008).

    ADS  CAS  PubMed  Google Scholar 

  75. 75

    Tsankova, N., Renthal, W., Kumar, A. & Nestler, E. J. Epigenetic regulation in psychiatric disorders. Nature Rev. Neurosci. 8, 355–367 (2007).

    CAS  Google Scholar 

  76. 76

    Szyf, M., Weaver, I. & Meaney, M. Maternal care, the epigenome and phenotypic differences in behavior. Reprod. Toxicol. 24, 9–19 (2007).

    CAS  PubMed  Google Scholar 

  77. 77

    Weaver, I. C. et al. Epigenetic programming by maternal behavior. Nature Neurosci. 7, 847–854 (2004).

    CAS  PubMed  Google Scholar 

  78. 78

    Tsankova, N. M., Kumar, A. & Nestler, E. J. Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J. Neurosci. 24, 5603–5610 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Tsankova, N. M. et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neurosci. 9, 519–525 (2006). This paper contains one of the first demonstrations of the role of epigenetic modifications in stress-induced effects on the brain and their reversal by antidepressant treatments, as well as the therapeutic potential of HDAC inhibitors in depression.

    CAS  Google Scholar 

  80. 80

    Schroeder, F. A., Lin, C. L., Crusio, W. E. & Akbarian, S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol. Psychiatry 62, 55–64 (2007).

    CAS  Google Scholar 

  81. 81

    Renthal, W. et al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56, 517–529 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Yehuda, R. Risk and resilience in posttraumatic stress disorder. J. Clin. Psychiatry 65 (Suppl. 1), 29–36 (2004).

    CAS  PubMed  Google Scholar 

  83. 83

    Charney, D. S. Psychobiological mechanisms of resilience and vulnerability: implications for successful adaptation to extreme stress. Am. J. Psychiatry 161, 195–216 (2004).

    PubMed  Google Scholar 

  84. 84

    Berton, O. et al. Induction of ΔFosB in the periaqueductal gray by stress promotes active coping responses. Neuron 55, 289–300 (2007). In this paper, the learned-helplessness model is used to illustrate the pro-resilient effects of the transcription factor ΔFOSB within the dorsal raphe nucleus.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Strekalova, T., Spanagel, R., Bartsch, D., Henn, F. A. & Gass, P. Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology 29, 2007–2017 (2004).

    Google Scholar 

  86. 86

    Sajdyk, T. J. et al. Neuropeptide Y in the amygdala induces long-term resilience to stress-induced reductions in social responses but not hypothalamic–adrenal–pituitary axis activity or hyperthermia. J. Neurosci. 28, 893–903 (2008).

    CAS  PubMed  Google Scholar 

  87. 87

    Peaston, A. E. & Whitelaw, E. Epigenetics and phenotypic variation in mammals. Mamm. Genome 17, 365–374 (2006).

    PubMed  PubMed Central  Google Scholar 

  88. 88

    Bergstrom, A., Jayatissa, M. N., Thykjaer, T. & Wiborg, O. Molecular pathways associated with stress resilience and drug resistance in the chronic mild stress rat model of depression: a gene expression study. J. Mol. Neurosci. 33, 201–215 (2007).

    CAS  PubMed  Google Scholar 

  89. 89

    Zarate, C. A. Jr et al. A randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry 63, 856–864 (2006).

    CAS  Google Scholar 

  90. 90

    Maeng, S. et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol. Psychiatry 63, 349–352 (2008).

    CAS  Google Scholar 

  91. 91

    Garcia, L. S. et al. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 140–144 (2008).

    CAS  PubMed  Google Scholar 

  92. 92

    Maeng, S. & Zarate, C. A. Jr . The role of glutamate in mood disorders: results from the ketamine in major depression study and the presumed cellular mechanism underlying its antidepressant effects. Curr. Psychiatry Rep. 9, 467–474 (2007).

    PubMed  Google Scholar 

  93. 93

    Roy, M., David, N., Cueva, M. & Giorgetti, M. A study of the involvement of melanin-concentrating hormone receptor 1 (MCHR1) in murine models of depression. Biol. Psychiatry 61, 174–180 (2007).

    CAS  PubMed  Google Scholar 

  94. 94

    Georgescu, D. et al. The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance. J. Neurosci. 25, 2933–2940 (2005).

    CAS  PubMed  Google Scholar 

  95. 95

    Lutter, M. et al. The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. Nature Neurosci. 11, 752–753 (2008).

    CAS  PubMed  Google Scholar 

  96. 96

    Lu, X. Y., Kim, C. S., Frazer, A. & Zhang, W. Leptin: a potential novel antidepressant. Proc. Natl Acad. Sci. USA 103, 1593–1598 (2006).

    ADS  CAS  PubMed  Google Scholar 

  97. 97

    Kishi, T. & Elmquist, J. K. Body weight is regulated by the brain: a link between feeding and emotion. Mol. Psychiatry 10, 132–146 (2005).

    CAS  PubMed  Google Scholar 

  98. 98

    Kaplitt, M. G. et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet 369, 2097–2105 (2007). This paper demonstrates the efficacy and safety of stereotactic viral-mediated gene therapy in the treatment of severe Parkinson's disease.

    CAS  PubMed  Google Scholar 

  99. 99

    Cryan, J. F., Markou, A. & Lucki, I. Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol. Sci. 23, 238–245 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


Work in E.J.N.'s laboratory was supported by grants from the National Institute of Mental Health.

Author information



Ethics declarations

Competing interests

E.J.N. receives income for consulting for Merck Research Laboratories, Neurologix, and PsychoGenics, as well as research support from AstraZeneca.

Additional information

Reprints and permissions information is available at

Correspondence should be addressed to E.J.N. (

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krishnan, V., Nestler, E. The molecular neurobiology of depression. Nature 455, 894–902 (2008).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.