Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atlantic overturning responses to Late Pleistocene climate forcings

Abstract

The factors driving glacial changes in ocean overturning circulation are not well understood. On the basis of a comparison of 20 climate variables over the past four glacial cycles, the SPECMAP project1 proposed that summer insolation at high northern latitudes (that is, Milankovitch forcing) drives the same sequence of ocean circulation and other climate responses over 100-kyr eccentricity cycles, 41-kyr obliquity cycles and 23-kyr precession cycles. SPECMAP analysed the circulation response at only a few sites in the Atlantic Ocean, however, and the phase of circulation response has been shown to vary by site and orbital band2. Here we test the SPECMAP hypothesis by measuring the phase of orbital responses in benthic δ13C (a proxy indicator of ocean nutrient content) at 24 sites throughout the Atlantic over the past 425 kyr. On the basis of δ13C responses at 3,000–4,010 m water depth, we find that maxima in Milankovitch forcing are associated with greater mid-depth overturning in the obliquity band but less overturning in the precession band. This suggests that Atlantic overturning is strongly sensitive to factors beyond ice volume and summer insolation at high northern latitudes. A better understanding of these processes could lead to improvements in model estimates of overturning rates, which range from a 40 per cent increase to a 40 per cent decrease at the Last Glacial Maximum3 and a 10–50 per cent decrease over the next 140 yr in response to projected increases in atmospheric CO2 (ref. 4).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of benthic δ 13 C, orbital forcing, ice volume and SST.
Figure 2: Phases of orbital responses of benthic Δδ 13 C in the Atlantic.
Figure 3: Comparison of Δδ 13 C and SST phases.

Similar content being viewed by others

References

  1. Imbrie, J. et al. On the structure and origin of major glaciation cycles. 1. Linear responses to Milankovitch forcing. Paleoceanography 7, 701–738 (1992)

    Article  ADS  Google Scholar 

  2. Curry, W. B. in The South Atlantic: Past and Present Circulation (eds Wefer, G., Berger, W. H., Siedler, G. & Webb, D.) 577–598 (Springer, 1996)

    Book  Google Scholar 

  3. Weber, S. L. et al. The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations. Clim. Past 3, 51–64 (2007)

    Article  Google Scholar 

  4. Gregory, J. M. et al. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett. 32 L12703 doi: 10.1029/2005GL023209 (2005)

    Article  ADS  CAS  Google Scholar 

  5. McManus, J. F., Oppo, D. W., Keigwin, L. D., Cullen, J. L. & Bond, G. C. Thermohaline circulation and prolonged interglacial warmth in the North Atlantic. Quat. Res. 58, 17–21 (2002)

    Article  Google Scholar 

  6. Boyle, E. A. & Keigwin, L. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 330, 35–40 (1987)

    Article  ADS  CAS  Google Scholar 

  7. McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Dahl, K. A., Broccoli, A. J. & Stouffer, D. J. Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: A tropical Atlantic perspective. Clim. Dyn. 24, 325–346 (2005)

    Article  Google Scholar 

  9. Curry, W. B. & Oppo, D. W. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography 20 PA1017 doi: 10.1029/2004PA001021 (2005)

    Article  ADS  Google Scholar 

  10. Marchitto, T. M. & Broecker, W. S. Deep water mass geometry in the glacial Atlantic Ocean: A review of constraints from the paleonutrient proxy Cd/Ca. Geochem. Geophys. Geosyst. 7 Q12003 doi: 10.1029/2006GC001323 (2006)

    Article  ADS  CAS  Google Scholar 

  11. Mackensen, A., Hubberton, H.-W., Bickert, T., Fischer, G. & Fütterer, D. K. The δ13C in benthic foraminiferal tests of Fontbotia Wuellerstorfi (Schwager) relative to the δ13C of dissolved inorganic carbon in Southern Ocean Deep Water: Implications for glacial ocean circulation models. Paleoceanography 8, 587–610 (1993)

    Article  Google Scholar 

  12. McCave, I. N., Manighetti, B. & Beveridge, N. A. S. Circulation in the glacial North Atlantic inferred from grain-size measurements. Nature 374, 149–152 (1995)

    Article  ADS  CAS  Google Scholar 

  13. Raymo, M. E., Ruddiman, W. F., Shackleton, N. J. & Oppo, D. W. Evolution of the Atlantic-Pacific δ13C gradients over the last 2.5 m.y. Earth Planet. Sci. Lett. 93, 353–368 (1990)

    Article  ADS  Google Scholar 

  14. Lisiecki, L. E. & Raymo, M. E. A. Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20 PA1003 doi: 10.1029/2004PA001071 (2005)

    Article  ADS  Google Scholar 

  15. Skinner, L. C. & Shackleton, N. J. An Atlantic lead over Pacific deep-water change across Termination I: Implications for the application of the marine isotope stage stratigraphy. Quat. Sci. Rev. 24, 571–580 (2005)

    Article  ADS  Google Scholar 

  16. Ruddiman, W. F., Raymo, M. E., Martinson, D. G., Clement, B. M. & Backman, J. Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean. Paleoceanography 4, 353–412 (1989)

    Article  ADS  Google Scholar 

  17. Huybers, P., Gebbie, G. & Marchal, O. Can paleoceanographic tracers constrain meridional circulation rates? J. Phys. Oceanogr. 37, 394–407 (2007)

    Article  ADS  Google Scholar 

  18. Ruhlemann, C., Mulitza, S., Muller, P. J., Wefer, G. & Zahn, R. Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation. Nature 402, 511–514 (1999)

    Article  ADS  CAS  Google Scholar 

  19. Ruddiman, W. F. & McIntyre, A. Oceanic mechanisms for amplification of the 23,000-year ice-volume cycle. Science 212, 617–627 (1981)

    Article  ADS  CAS  Google Scholar 

  20. Imbrie, J., McIntyre, A. & Mix, A. in Climate and Geo-Sciences (eds Berger, A. et al.) 121–164 (Kluwer Academic, 1989)

    Book  Google Scholar 

  21. Schmidt, M. W., Vautravers, M. J. & Spero, H. J. Western Caribbean sea surface temperatures during the late Quaternary. Geochem. Geophys. Geosyst. 7 Q02P10 doi: 10.1029/2005GC000957 (2006)

    Article  Google Scholar 

  22. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)

    Article  ADS  CAS  Google Scholar 

  23. Wang, Z. & Mysak, L. A. Simulation of the last glacial inception and rapid ice sheet growth in the McGill paleoclimate model. Geophys. Res. Lett. 29 doi: 10.1029/2002GL015120 (2002)

  24. Khodri, M. et al. Modelling the climate evolution from the last interglacial to the start of the last glaciation: The role of Arctic Ocean freshwater budget. Geophys. Res. Lett. 30 1606 doi: 10.1029/2003GL017108 (2003)

    Article  ADS  Google Scholar 

  25. Yoshimori, M., Weaver, A. J., Marshall, S. J. & Clarke, G. K. C. Glacial termination: Sensitivity to orbital and CO2 forcing in a coupled climate system model. Clim. Dyn. 17, 571–588 (2001)

    Article  Google Scholar 

  26. Crucifix, M. & Loutre, M. F. Transient simulations over the last interglacial period (125–115 kyr BP): Feedback and forcing analysis. Clim. Dyn. 19, 417–433 (2002)

    Article  Google Scholar 

  27. Tuenter, E., Weber, S. L., Hilgen, F. J., Lourens, L. J. & Ganopolski, A. Simulation of climate phase lags in response to precession and obliquity forcing and the role of vegetation. Clim. Dyn. 24, 279–295 (2005)

    Article  Google Scholar 

  28. Shin, S., Liu, Z., Otto-Bliesner, B., Brady, E. & Kutzbach, J. Southern Ocean sea-ice control of the glacial North Atlantic thermohaline circulation. Geophys. Res. Lett. 30 doi: 10.1029/2002GL015513 (2003)

  29. Kawamura, K. et al. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448, 912–917 (2007)

    Article  ADS  CAS  Google Scholar 

  30. Huybers, P. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313, 508–511 (2006)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Herbert, D. Oppo, Z. Liu, P. Huybers, A. Carlson and L. Robinson for discussions. L.E.L. was supported by the NOAA Postdoctoral Program in Climate and Global Change, administered by the University Corporation for Atmospheric Research. M.E.R. and W.B.C. acknowledge the support of NSF grants.

Author Contributions L.E.L. designed the study, performed the spectral analysis, and wrote the paper in consultation with M.E.R. and W.B.C.; contributed unpublished data from ODP Sites 926 and 928.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorraine E. Lisiecki.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary References Supplementary Tables 1-2 and Supplementary Figures 1-7 with Legends. (PDF 451 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisiecki, L., Raymo, M. & Curry, W. Atlantic overturning responses to Late Pleistocene climate forcings. Nature 456, 85–88 (2008). https://doi.org/10.1038/nature07425

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07425

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing